Dark Sun: The Making Of The Hydrogen Bomb

Dark Sun: The Making Of The Hydrogen Bomb

by Richard Rhodes
Dark Sun: The Making Of The Hydrogen Bomb

Dark Sun: The Making Of The Hydrogen Bomb

by Richard Rhodes

Audio CD

$94.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
    Available for Pre-Order. This item will be released on November 26, 2024
  • PICK UP IN STORE

    Store Pickup available after publication date.

Related collections and offers


Overview

Here, for the first time, in a brilliant, panoramic portrait by the Pulitzer Prize-winning author of The Making of the Atomic Bomb, is the definitive, often shocking story of the politics and the science behind the development of the hydrogen bomb and the birth of the Cold War.

Based on secret files in the United States and the former Soviet Union, this monumental work of history discloses how and why the United States decided to create the bomb that would dominate world politics for more than forty years.

Product Details

ISBN-13: 9781797179896
Publisher: Simon & Schuster Audio
Publication date: 11/26/2024
Product dimensions: 6.00(w) x 1.50(h) x 5.00(d)
Age Range: 18 Years

About the Author

Richard Rhodes is the author of numerous books and the winner of the Pulitzer Prize, the National Book Award, and the National Book Critics Circle Award. He graduated from Yale University and has received fellowships from the Ford Foundation, the National Endowment for the Arts, the John Simon Guggenheim Memorial Foundation, and the Alfred P. Sloan Foundation. Appearing as host and correspondent for documentaries on public television’s Frontline and American Experience series, he has also been a visiting scholar at Harvard and MIT and is an affiliate of the Center for International Security and Cooperation at Stanford University. Visit his website RichardRhodes.com.

Read an Excerpt

Chapter 1

'A Smell of Nuclear Powder'

Early in January 1939, nine months before the outbreak of the Second World War, a letter from Paris alerted physicists in the Soviet Union to the startling news that German radiochemists had discovered a fundamental new nuclear reaction. Bombarding uranium with neutrons, French physicist Frédéric Joliot-Curie wrote his Leningrad colleague Abram Fedorovich Ioffe, caused that heaviest of natural elements to disintegrate into two or more fragments that repelled each other with prodigious energy. It was fitting that the first report of a discovery that would challenge the dominant political system of the world should reach the Soviet Union from France, a nation to which Czarist Russia had looked for culture and technology. Joliot-Curie's letter to the grand old man of Russian physics "got a frenzied going-over" in a seminar at Ioffe's institute in Leningrad, a protégé of one of the participants reports. "The first communications about the discovery of fission...astounded us," Soviet physicist Georgi Flerov remembered in old age. "...There was a smell of nuclear powder in the air."

Reports in the British scientific journal Nature soon confirmed the German discovery and research on nuclear fission started up everywhere. The news fell on fertile ground in the Soviet Union. Russian interest in radioactivity extended back to the time of its discovery at the turn of the century. Vladimir I. Vernadski, a Russian mineralogist, told the Russian Academy of Sciences in 1910 that radioactivity opened up "new sources of atomic energy...exceeding by millions of times all the sources of energy that the human imaginationhas envisaged." Academy geologists located a rich vein of uranium ore in the Fergana Valley in Uzbekistan in 1910; a private company mined pitchblende there at Tiuia-Muiun ("Camel's Neck") until 1914. After the First World War, the Red Army seized the residues of the company's extraction of uranium and vanadium. The residues contained valuable radium, which transmutes naturally from uranium by radioactive decay. The Soviet radiochemist Vitali Grigorievich Khlopin extracted several grams of radium for medical use in 1921.

There were only about a thousand physicists in the world in 1895. Work in the new scientific discipline was centered in Western Europe in the early years of the twentieth century. A number of Russian scientists studied there. Abram Ioffe's career preparation included research in Germany with Nobel laureate Wilhelm Roentgen, the discoverer of X rays; Vernadski worked at the Curie Institute in Paris. The outstanding Viennese theoretical physicist Paul Ehrenfest taught in St. Petersburg for five years before the First World War. In 1918, in the midst of the Russian Revolution, Ioffe founded a new Institute of Physics and Technology in Petrograd. Despite difficult conditions -- the chemist N. N. Semenov describes "hunger and ruin everywhere, no instruments or equipment" as late as 1921 -- "Fiztekh" quickly became a national center for physics research. "The Institute was the most attractive place of employment for all the young scientists looking to contribute to the new physics," Soviet physicist Sergei E. Frish recalls. "...Ioffe was known for his up-to-date ideas and tolerant views. He willingly took on, as staff members, beginning physicists whom he judged talented....Dedication to science was all that mattered to him." The crew Ioffe assembled was so young and eager that older hands nicknamed Fiztekh "the kindergarten."

During its first decade, Fiztekh specialized in the study of high-voltage electrical effects, practical research to support the new Communist state's drive for national electrification -- the success of socialism, Lenin had proclaimed more than once, would come through electrical power. After 1928, having ousted his rivals and consolidated his rule, Josef Stalin promulgated the first of a brutal series of Five-Year Plans that set ragged peasants on short rations building monumental hydroelectric clams to harness Russia's wild rivers. "Stalin's realism was harsh and unillusioned," comments C. P. Snow. "He said, after the first two years of industrialization, when people were pleading with him to go slower because the country couldn't stand it:

To slacken the pace would mean to lag behind; and those who lag behind are beaten. We do not want to be beaten. No, we don't want to be. Old Russia was ceaselessly beaten for her backwardness. She was beaten by the Mongol khans, she was beaten by Turkish beys, she was beaten by the Swedish feudal lords, she was beaten by Polish-Lithuanian pans, she was beaten by Anglo-French capitalists, she was beaten by Japanese barons, she was beaten by all -- for her backwardness. For military backwardness, for cultural backwardness, for agricultural backwardness. She was beaten because to beat her was profitable and went unpunished. You remember the words of the pre-revolutionary poet: "Thou art poor and thou art plentiful, thou art mighty, and thou art helpless, Mother Russia."

We are fifty or a hundred years behind the advanced countries. We must make good the lag in ten years. Either we do it or they crush us.

Soviet scientists felt a special burden of responsibility in the midst of such desperate struggle; the heat and light that radioactive materials such as radium generate for centuries without stint mocked their positions of privilege. Vernadski, who founded the State Radium Institute in Petrograd in 1922, wrote hopefully that year that "it will not be long before man will receive atomic energy for his disposal, a source of energy which will make it possible for him to build his life as he pleases." World leaders such as England's Ernest Rutherford, who discovered the atomic nucleus, and Albert Einstein, who quantified the energy latent in matter in his formula E = mc2, disputed such optimistic assessments. The nuclei of atoms held latent far more energy than all the falling water of the world, but the benchtop processes then known for releasing it consumed much more energy than they produced. Fiztekh had spun off provincial institutes in 1931, most notably at Kharkov and Sverdlovsk; in 1932, when the discovery of the neutron and of artificial radioactivity increased the pace of research into the secrets of the atomic nucleus, Ioffe decided to divert part of Fiztekh's effort specifically to nuclear physics. The government shared his enthusiasm. "I went to Sergei Ordzhonikidze," Ioffe wrote many years later, "who was chairman of the Supreme Council of National Economy, put the matter before him, and in literally ten minutes left his office with an order signed by him to assign the sum I had requested to the Institute."

To direct the new program, Ioffe chose Igor Vasilievich Kurchatov, an exceptional twenty-nine-year-old physicist, the son of a surveyor and a teacher, born in the pine-forested Chelyabinsk region of the southern Urals in 1903. Kurchatov was young for the job, but he was a natural leader, vigorous and self-confident. One of his contemporaries, Anatoli P. Alexandrov, remembers his characteristic tenacity:

I was always struck by his great sense of responsibility, for whatever problem he was working on, whatever its dimensions may have been. A lot of us, after all, take a careless, haphazard attitude toward many aspects of life that seem secondary to us. There wasn't a bit of that attitude in Igor vasilievich....[He] would sink his teeth into us and drink our blood until we'd fulfilled [our obligations]. At the same time, there was nothing pedantic about him. He would throw himself into things with such evident joy and conviction that finally we, too, would get caught up in his energetic style....

We'd already nicknamed him "General."...

Within a year, justi

Table of Contents

Preface to the Sloan Technology Series
Prologue: Deliveries

Part One
A Choice Between Worlds

1. 'A Smell of Nuclear Powder'
2. Diffusion
3. 'Material of Immense Value'
4. A Russian Connection
5. 'Super Lend-Lease'
6. Rendezvous
7. 'Mass Production'
8. Explosions
9. 'Provide the Bomb'
10. A Pretty Good Description

Part Two
New Weapons Added to the Arsenals

11. Transitions
12. Peculiar Sovereignties
13. Changing History
14. F-1
15. Modus Vivendi
16. Sailing Near the Wind
17. Getting Down to Business
18. 'This Buck Rogers Universe'
19. First Lightning
20. 'Gung-ho for the Super'

Part Three
Scorpions in a Bottle

21. Fresh Horrors
22. Lessons of Limited War
23. Hydrodynamic Lenses and Radiation Mirrors
24. Mike
25. Powers of Retaliation
26. In the Matter of J. Robert Oppenheimer
27. Scorpions in a Bottle

Epilogue: 'The Gradual Removal of Prejudices'

Acknowledgments
Notes
Glossary of Names
Bibliography
Index

From the B&N Reads Blog

Customer Reviews