Advanced Engineering Dynamics
This text offers a clear and refreshing exposition of the dynamics of mechanical systems from an engineering perspective. Basic concepts are thoroughly covered, then applied in a systematic manner to solve problems in mechanical systems that have recognisable applications to engineering practice. All theoretical discussions are accompanied by numerous illustrative examples, and each chapter offers a wealth of homework problems. The treatment of the kinematics of particles and rigid bodies is extensive. In this new edition, the author has revised and reorganized sections to enhance understanding of physical principles, and he has modified and added examples, as well as homework problems. The new edition also contains a thorough development of computational methods for solving the differential equations of motion for constrained systems.
"1100483223"
Advanced Engineering Dynamics
This text offers a clear and refreshing exposition of the dynamics of mechanical systems from an engineering perspective. Basic concepts are thoroughly covered, then applied in a systematic manner to solve problems in mechanical systems that have recognisable applications to engineering practice. All theoretical discussions are accompanied by numerous illustrative examples, and each chapter offers a wealth of homework problems. The treatment of the kinematics of particles and rigid bodies is extensive. In this new edition, the author has revised and reorganized sections to enhance understanding of physical principles, and he has modified and added examples, as well as homework problems. The new edition also contains a thorough development of computational methods for solving the differential equations of motion for constrained systems.
84.49 In Stock
Advanced Engineering Dynamics

Advanced Engineering Dynamics

by Jerry H. Ginsberg
Advanced Engineering Dynamics

Advanced Engineering Dynamics

by Jerry H. Ginsberg

eBookRevised (Revised)

$84.49  $112.00 Save 25% Current price is $84.49, Original price is $112. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

This text offers a clear and refreshing exposition of the dynamics of mechanical systems from an engineering perspective. Basic concepts are thoroughly covered, then applied in a systematic manner to solve problems in mechanical systems that have recognisable applications to engineering practice. All theoretical discussions are accompanied by numerous illustrative examples, and each chapter offers a wealth of homework problems. The treatment of the kinematics of particles and rigid bodies is extensive. In this new edition, the author has revised and reorganized sections to enhance understanding of physical principles, and he has modified and added examples, as well as homework problems. The new edition also contains a thorough development of computational methods for solving the differential equations of motion for constrained systems.

Product Details

ISBN-13: 9781139930291
Publisher: Cambridge University Press
Publication date: 11/13/1998
Sold by: Barnes & Noble
Format: eBook
File size: 47 MB
Note: This product may take a few minutes to download.

About the Author

Jerry Ginsberg joined the faculty of Purdue University in 1969, and the Georgia Institute of Technology in 1980. He became the first Woodruff Chair in Mechanical Systems in 1988. In 1994 he was named the Georgia Tech Distinguished Professor, the Institute's highest award. Professor Ginsberg's activities include seminal contributions in nonlinear dynamics, shell vibrations, dynamic stability of pipes, nonlinear acoustics, shock response of submerged structures, acoustic-structure interaction, and experimental modal analysis. His research and books go beyond merely addressing the subject to elucidate fundamental physical phenomena. He is the author of more than 100 archival papers, and two graduate textbooks: Advanced Engineering Dynamics and Mechanical and Structural Vibrations. His undergraduate texts, Statics and Dynamics, with Joseph Genin, fundamentally influenced the pedagogy for these courses. He is an Associate Editor of the Journal of the Acoustical Society of America and previously was an Associate Editor of the ASME Journal of Vibration and Acoustics. Among his significant speeches are keynote lectures at the 2nd International Conference on Vibrations, Dynamics, and Controls in Beijing, the 2nd Annual Meeting of the Chinese Society of Vibrations and Acoustics in Keelung, Taiwan, and presentations of the Rayleigh Lecture and the Noise Control and Acoustics Division Special Lecture at the 2001 and 2003 ASME IMEC Conferences. He is a Fellow in ASA and of ASME. Among his awards are the ASEE Archie Higdon Distinguished Educator in Mechanics (1998), the Acoustical Society of America Trent-Crede Silver Medal (2005), and the ASME Per Bruel Gold Medal in Noise Control and Acoustics (2007). The citations for the latter two awards note his fundamental contributions to theory and practice in vibrations and acoustics.

Table of Contents

1. Basic considerations; 2. Introduction; 3. Newton's Laws; 4. Systems of Units; 5. Vector Calculus; 6. Energy and Momentum; 7. Brief Biographical Perspective; 8. Particle Kinematics; 9. Path Variables-Intrinsic Coordinates; 10. Rectangular Cartesian Coordinates; 11. Orthogonal Curvilinear Coordinates; 12. Joint Kinematical Descriptions; 13. Relative Motion; 14. Rotation Transformations; 15. Finite Rotations; 16. Angular Velocity and Derivatives of Rotating Vectors; 17. Angular Acceleration; 18. Derivative of an Arbitrary Factor; 19. Velocity and Acceleration Using a Moving Reference Frame; 20. Observations from a Moving Reference System; 21. Kinematics of Rigid Bodies; 22. General Equations; 23. Eulerian Angles; 24. Interconnections; 25. Rolling; 26. Newtonian Kinetics of a Rigid Body; 27. Fundamental Principles; 28. Evaluations of Angular Momentum and Inertia Properties; 29. Rate of Change of Angular Momentum; 30. Equations of Motion; 31. Planar Motion; 32. Impulse-Momentum and Work-Energy Principles; 33. System of Rigid Bodies; 34. Introduction of Analytical Mechanics; 35. Generalized Coordinates and Degrees of Freedom; 36. Constraints - Holonomic and Nonholonomic; 37. Virtual Displacements; 38. Generalized Forces; 39. Hamilton's Principle; 40. Lagrange's Equations. 41. Further Concepts in Analytical Mechanics; 42. Constrained Generalized Coordinates; 43. Computational Methods in the State-Space; 44. Hamiltonian Mechanics and Further Conservation Principles; 45. Gibbs-Appell Equations for Quasi-Coordinates; 46. Gyroscopic Effects; 47. Free Motion; 48. Spinning Top; 49. Gyroscopes for Inertial Guidance; Appendix; Answers to even-numbered problems; Index.
From the B&N Reads Blog

Customer Reviews