Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices

ISBN-10:
0128198974
ISBN-13:
9780128198971
Pub. Date:
12/10/2020
Publisher:
Elsevier Science
ISBN-10:
0128198974
ISBN-13:
9780128198971
Pub. Date:
12/10/2020
Publisher:
Elsevier Science
Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices

$190.0
Current price is , Original price is $190.0. You
$190.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices provides a deep insight into energy storage systems and their applications. The first two chapters cover the detailed background, fundamental charge storage mechanism and the various types of supercapacitor. The third chapter give details about the hybrid device (Supercapattery) which comprises of battery and capacitive electrode. The main advantages of Supercapattery over batteries and supercapacitor are discussed in this chapter. The preceding three chapters cover the electrode materials used for supercapattery. The electrolyte is a major part that significantly contributes to the performance of the device. Therefore, different kinds of electrolytes and their suitability are discussed in chapter 6 and 7. The book concludes with a look at the potential applications of supercapattery, challenges and future prospective. This book is beneficial for research scientists, engineers and students who are interested in the latest developments and fundamentals of energy storage mechanism and clarifies the misleading concepts in this field.


Product Details

ISBN-13: 9780128198971
Publisher: Elsevier Science
Publication date: 12/10/2020
Pages: 412
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Dr. Mohammad Khalid is a Research Professor and Head of Graphene and Advanced 2D Materials Research Group at Sunway University, Malaysia. His research interests lie in the area of advanced nanomaterial synthesis, heat transfer fluids, energy harvesting, and storage. He is among the top 2% of scientists in the world, with over 200 research articles published in peer-reviewed international journals. He has supervised more than 30 postgraduate students and has over 15 years of research and teaching experience. He is also a Fellow of the Higher Education Academy (FHEA), UK.

Dr. Numan Arshid obtained his PhD in Physics with distinction from University of Malaya, Malaysia. His PhD research focused on the development of metal oxide nanostructures supported on carbon matrix for supercapacitor and electrochemical sensing applications. Additionally, he has worked on the preparation of solid/gel polymer electrolytes for electric double capacitors and novel electrode materials for hybrid supercapacitors. His research at the Graphene and Advanced 2D Materials Research Group (GAMRG) focuses on the preparation of 2D materials and their application for electrochemical energy storage.

Dr. A. Nirmala Grace is an Associate Professor at the Centre for Nanotechnology Research, VIT University, Vellore, India. She has more than 55 International Peer reviewed publications. Her current research group is working on various niche areas of nanotechnology like Hybrid Nanomaterials - Synthesis, Applications in Energy sector - Renewable Energy, Supercapacitors, Fuel cells, Batteries, Photoelectrocatalysis, H2 production and under Environmental, she is working on Photocatalysis and adsorbents for organic and Inorganic pollutant removal, CO2 conversion, and also on Sensor applications like gas and food sensors.

Table of Contents

1. Background of Energy Storage 2. Fundamental Electrochemical Energy Storage Systems3. Conducting polymeric nanocomposite for supercapattery4. Carbonaceous nanocomposites for supercapattery 5. Binary Metal oxides for supercapattery6. Ternary nanocomposites for supercapattery7. Metal/Metal Oxide thin film Electrode for Supercapattery8. Aqueous Electrolytes for supercapattery 9. Solid/Gel Polymer Electrolytes for Supercapattery 10. Industrial Scale applications of Supercapattery11. Future Prospects and challenges

What People are Saying About This

From the Publisher

Covers the latest fundamental developments and innovative materials used for hybrid electrochemical energy storage systems and their technological contribution to the quest for better energy storage

From the B&N Reads Blog

Customer Reviews