Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists
Sind Algorithmen Freund oder Feind?

Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen nicht zu essen, der verdorben zu sein scheint. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Zwar wird mit der Entwicklung von Algorithmen und maschinellem Lernen versucht, Voreingenommenheit zu beseitigen, doch werden sie schließlich von Menschen geschaffen und sind daher anfällig für das, was wir algorithmische Voreingenommenheit nennen.

In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, handhaben und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Verzerrungen spiegeln diese menschlichen Tendenzen wider und haben ihren Ursprung in ihnen. Baer befasst sich mit so unterschiedlichen Themen wie der Erkennung von Anomalien, hybriden Modellstrukturen und selbstverbesserndem maschinellen Lernen.

Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt werden kann. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Egal, ob Sie eine erfahrene Führungskraft in der Wirtschaft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind, jetzt ist ein entscheidender Zeitpunkt, um sich über die Auswirkungen algorithmischer Verzerrungen auf die Gesellschaft zu informieren und eine aktive Rolle im Kampf gegen Verzerrungen zu übernehmen.

Was Sie lernen werden

Untersuchung der vielen Quellen algorithmischer Verzerrungen, einschließlich kognitiver Verzerrungen in der realen Welt, verzerrter Daten und statistischer Artefakte

Verstehen Sie die Risiken algorithmischer Verzerrungen, wie sie erkannt werden können und welche Managementtechniken es gibt, um sie zu verhindern oder zu verwalten

Erkennen, wie maschinelles Lernen sowohl neue Quellen für algorithmische Verzerrungen schafft als auch ein Teil der Lösung sein kann

Kenntnis spezifischer statistischer Techniken, die ein Datenwissenschaftler anwenden kann, um algorithmische Verzerrungen zu erkennen und zu beseitigen

Für wen dieses Buch gedacht ist

Führungskräfte von Unternehmen, die Algorithmen im täglichen Betrieb einsetzen; Datenwissenschaftler (von Studenten bis hin zu erfahrenen Praktikern), die Algorithmen entwickeln; Compliance-Beamte, die über algorithmische Verzerrungen besorgt sind; Politiker, Journalisten und Philosophen, die über algorithmische Verzerrungen im Hinblick auf ihre Auswirkungen auf die Gesellschaft und mögliche regulatorische Maßnahmen nachdenken; und Verbraucher, die darüber besorgt sind, wie sie von algorithmischen Verzerrungen betroffen sein könnten

1142804748
Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists
Sind Algorithmen Freund oder Feind?

Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen nicht zu essen, der verdorben zu sein scheint. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Zwar wird mit der Entwicklung von Algorithmen und maschinellem Lernen versucht, Voreingenommenheit zu beseitigen, doch werden sie schließlich von Menschen geschaffen und sind daher anfällig für das, was wir algorithmische Voreingenommenheit nennen.

In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, handhaben und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Verzerrungen spiegeln diese menschlichen Tendenzen wider und haben ihren Ursprung in ihnen. Baer befasst sich mit so unterschiedlichen Themen wie der Erkennung von Anomalien, hybriden Modellstrukturen und selbstverbesserndem maschinellen Lernen.

Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt werden kann. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Egal, ob Sie eine erfahrene Führungskraft in der Wirtschaft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind, jetzt ist ein entscheidender Zeitpunkt, um sich über die Auswirkungen algorithmischer Verzerrungen auf die Gesellschaft zu informieren und eine aktive Rolle im Kampf gegen Verzerrungen zu übernehmen.

Was Sie lernen werden

Untersuchung der vielen Quellen algorithmischer Verzerrungen, einschließlich kognitiver Verzerrungen in der realen Welt, verzerrter Daten und statistischer Artefakte

Verstehen Sie die Risiken algorithmischer Verzerrungen, wie sie erkannt werden können und welche Managementtechniken es gibt, um sie zu verhindern oder zu verwalten

Erkennen, wie maschinelles Lernen sowohl neue Quellen für algorithmische Verzerrungen schafft als auch ein Teil der Lösung sein kann

Kenntnis spezifischer statistischer Techniken, die ein Datenwissenschaftler anwenden kann, um algorithmische Verzerrungen zu erkennen und zu beseitigen

Für wen dieses Buch gedacht ist

Führungskräfte von Unternehmen, die Algorithmen im täglichen Betrieb einsetzen; Datenwissenschaftler (von Studenten bis hin zu erfahrenen Praktikern), die Algorithmen entwickeln; Compliance-Beamte, die über algorithmische Verzerrungen besorgt sind; Politiker, Journalisten und Philosophen, die über algorithmische Verzerrungen im Hinblick auf ihre Auswirkungen auf die Gesellschaft und mögliche regulatorische Maßnahmen nachdenken; und Verbraucher, die darüber besorgt sind, wie sie von algorithmischen Verzerrungen betroffen sein könnten

24.99 In Stock
Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists

Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists

by Tobias Bär
Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists

Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern: Ein Leitfaden für Entscheider und Data Scientists

by Tobias Bär

Paperback(1. Aufl. 2022)

$24.99 
  • SHIP THIS ITEM
    Ships in 1-2 days
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Sind Algorithmen Freund oder Feind?

Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen oder wenn wir beschließen, einen Bissen Essen nicht zu essen, der verdorben zu sein scheint. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Zwar wird mit der Entwicklung von Algorithmen und maschinellem Lernen versucht, Voreingenommenheit zu beseitigen, doch werden sie schließlich von Menschen geschaffen und sind daher anfällig für das, was wir algorithmische Voreingenommenheit nennen.

In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, handhaben und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Verzerrungen spiegeln diese menschlichen Tendenzen wider und haben ihren Ursprung in ihnen. Baer befasst sich mit so unterschiedlichen Themen wie der Erkennung von Anomalien, hybriden Modellstrukturen und selbstverbesserndem maschinellen Lernen.

Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt werden kann. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Egal, ob Sie eine erfahrene Führungskraft in der Wirtschaft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind, jetzt ist ein entscheidender Zeitpunkt, um sich über die Auswirkungen algorithmischer Verzerrungen auf die Gesellschaft zu informieren und eine aktive Rolle im Kampf gegen Verzerrungen zu übernehmen.

Was Sie lernen werden

Untersuchung der vielen Quellen algorithmischer Verzerrungen, einschließlich kognitiver Verzerrungen in der realen Welt, verzerrter Daten und statistischer Artefakte

Verstehen Sie die Risiken algorithmischer Verzerrungen, wie sie erkannt werden können und welche Managementtechniken es gibt, um sie zu verhindern oder zu verwalten

Erkennen, wie maschinelles Lernen sowohl neue Quellen für algorithmische Verzerrungen schafft als auch ein Teil der Lösung sein kann

Kenntnis spezifischer statistischer Techniken, die ein Datenwissenschaftler anwenden kann, um algorithmische Verzerrungen zu erkennen und zu beseitigen

Für wen dieses Buch gedacht ist

Führungskräfte von Unternehmen, die Algorithmen im täglichen Betrieb einsetzen; Datenwissenschaftler (von Studenten bis hin zu erfahrenen Praktikern), die Algorithmen entwickeln; Compliance-Beamte, die über algorithmische Verzerrungen besorgt sind; Politiker, Journalisten und Philosophen, die über algorithmische Verzerrungen im Hinblick auf ihre Auswirkungen auf die Gesellschaft und mögliche regulatorische Maßnahmen nachdenken; und Verbraucher, die darüber besorgt sind, wie sie von algorithmischen Verzerrungen betroffen sein könnten


Product Details

ISBN-13: 9783662663141
Publisher: Springer Berlin Heidelberg
Publication date: 01/01/2023
Edition description: 1. Aufl. 2022
Pages: 286
Product dimensions: 6.10(w) x 9.25(h) x (d)
Language: German

About the Author

Tobias Baer ist Datenwissenschaftler, Psychologe und Top-Management-Berater mit über 20 Jahren Erfahrung in der Risikoanalyse. Bis Juni 2018 war er Master-Experte und Partner bei McKinsey & Co. und baute dort 2004 das Risk Advanced Analytics Center of Competence von McKinsey in Indien auf, leitete die Credit Risk Advanced Analytics Service Line weltweit und betreute Kunden in über 50 Ländern zu Themen wie der Entwicklung analytischer Entscheidungsmodelle für das Underwriting von Krediten, die Preisgestaltung von Versicherungen und die Steuervollstreckung sowie zu Entlastungsentscheidungen. Tobias hat eine Forschungsagenda rund um Analytik und Entscheidungsfindung verfolgt, sowohl bei McKinsey (z.B. zur Entlastung von Urteilsentscheidungen und zur Nutzung von maschinellem Lernen zur Entwicklung hochtransparenter Vorhersagemodelle) als auch an der University of Cambridge, UK (z.B. die Auswirkung mentaler Ermüdung auf Entscheidungsvoreingenommenheit).
Tobias hat einen Doktortitel in Finanzwissenschaften von der Universität Frankfurt, einen MPhil in Psychologie von der Universität Cambridge, einen MA in Wirtschaftswissenschaften von der UWM und hat ein Grundstudium in Betriebswirtschaft und Jura an der Universität Gießen absolviert. Er begann bereits als Teenager, in einem deutschen Software-Magazin über Programmiertricks für den Commodore C64 zu schreiben, und bloggt nun regelmäßig auf seiner LinkedIn-Seite.

Table of Contents

Teil I: Eine Einführung in Verzerrungen und Algorithmen.

Kapitel 1: Einführung.-

Kapitel 2: Voreingenommenheit in der menschlichen Entscheidungsfindung -

Kapitel 3: Wie Algorithmen Entscheidungen verfälschen.-

Kapitel 4: Der Modellentwicklungsprozess -

Kapitel 5: Maschinelles Lernen in der Kurzfassung.-

Teil II: Woher kommen algorithmische Verzerrungen?

Kapitel 6: Wie Vorurteile in der realen Welt von Algorithmen widergespiegelt werden.-

Kapitel 7: Die Voreingenommenheit von Datenwissenschaftlern.-

Kapitel 8: Wie Daten Verzerrungen hervorrufen können.

Kapitel 9: Die Stabilitätsverzerrung von Algorithmen -

Kapitel 10: Vorurteile, die durch den Algorithmus selbst verursacht werden.

Kapitel 11: Algorithmische Verzerrungen und soziale Medien -

Teil III: Algorithmische Verzerrungen aus der Nutzerperspektive - Was kann man dagegen tun?

Kapitel 12: Optionen für die Entscheidungsfindung.-

Kapitel 13: Bewertung des Risikos algorithmischer Verzerrungen -

Kapitel 14: Wie man Algorithmen sicher verwendet

Kapitel 15: Algorithmische Verzerrungen erkennen -

Kapitel 16: Management-Strategien zur Korrektur algorithmischer Verzerrungen -

Kapitel 17: Wie man unverzerrte Daten generiert.

Teil IV: Algorithmische Verzerrungen aus der Sicht eines Datenwissenschaftlers - Was ist zu tun?

Kapitel 18: Die Rolle des Datenwissenschaftlers bei der Überwindung algorithmischer Verzerrungen -

Kapitel 19: Eine Röntgenuntersuchung Ihrer Daten.-

Kapitel 20: Wann man maschinelles Lernen einsetzen sollte -

Kapitel 21: Wie man maschinelles Lernen mit traditionellen Methoden verbindet.

Kapitel 22: Wie man Verzerrungen in selbstverbessernden Modellen vermeidet.

Kapitel 23: Wie man Debiasing institutionalisiert.-

From the B&N Reads Blog

Customer Reviews