An Introduction to Applied Electromagnetics and Optics

An Introduction to Applied Electromagnetics and Optics

An Introduction to Applied Electromagnetics and Optics

An Introduction to Applied Electromagnetics and Optics

eBook

$50.49  $66.99 Save 25% Current price is $50.49, Original price is $66.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.


Product Details

ISBN-13: 9781498776325
Publisher: CRC Press
Publication date: 11/18/2016
Sold by: Barnes & Noble
Format: eBook
Pages: 368
File size: 12 MB
Note: This product may take a few minutes to download.

About the Author

Vladimir V. Mitin is SUNY Distinguished Professor in the Department of Electrical Engineering and Adjunct Professor of Physics at the University at Buffalo, The State University of New York. He is a Fellow of IEEE, SPIE, APS, AAAS, and IoP and the author of five textbooks, four research monographs, and more than 260 research articles published in refereed journals.

Dmitry I. Sementsov is Professor of Physics at Ulyanovsk State University, Russia. He is the author of one textbook and more than 420 research papers published in peer-reviewed journals.

Table of Contents

PART I: ELECTRIC AND MAGNETIC FIELDS IN ISOTROPIC MEDIA. CHAPTER 1. ELECTROSTATICS. Electric charges, electric charge conservation law, Coulomb’s law. Electric field vector, principle of superposition. Electric potential and electric field energy. Gauss’s law for the electric field. Relation between the electric field and the electric potential. Poisson’s and Laplace equations. Electric field in a medium, electric displacement. Problems. CHAPTER 2. MAGNETOSTATICS. Interaction of moving charges. The field of moving charges and currents, the Biot-Savart law. Ampere’s law. Magnetic field of a solenoid. Magnetic field in a medium, magnetic field intensity. Problems. CHAPTER 3. MAXWELL’S EQUATIONS FOR ELECTROMAGNETIC FIELDS. Faraday’s law. Self-inductance and mutual inductance. Magnetic field energy. Transient processes in circuits with capacitors and inductors. Displacement current. Maxwell’s equations. Problems. PART II: ELECTROMAGNETIC WAVES IN HOMOGENEOUS, HETEROGENEOUS AND ANISOTROPIC MEDIA. CHAPTER 4. ELECTROMAGNETIC WAVES IN HOMOGENEOUS MEDIA WITHOUT ABSORPTION. Electromagnetic wave spectrum. Wave equation. Plane monochromatic waves. olarization of electromagnetic waves. Superposition of electromagnetic waves. Energy and momentum of a wave. Standing waves. Interference and coherence of electromagnetic waves. Problems. CHAPTER 5. ELECTROMAGNETIC FIELDS AND WAVES AT THE INTERFACE BETWEEN TWO MEDIA. Boundary conditions and inverse boundary value problem in electromagnetism Boundary conditions for the electric field of an electromagnetic wave. Boundary conditions for the magnetic field of an electromagnetic wave. Laws of reflection and refraction of waves. Reflection and transmission coefficients of waves. Total internal reflection. Reflection of a wave from a dielectric layer. Problems. CHAPTER 6. ELECTROMAGNETIC WAVES IN ANISOTROPIC AND OPTICALLY ACTIVE MEDIA. The structure of plane wave in an anisotropic medium. Dispersion relation and normal waves. Waves in uniaxial crystals. The refractive index ellipsoid. Optically active media. Waves in chiral media. Problems. CHAPTER 7. ELECTROMAGNETIC WAVES IN CONDUCTING MEDIA. The dielectric permittivity and impedance of a metal. Skin effect. Wave incidence on a metal surface. Surface waves at the interface between a dielectric and a conductor. Superconductivity. Quantum effects in superconductivity. Problems. PART III: ELECTROMAGNETIC WAVES IN PERIODIC AND WAVEGUIDING STRUCTURES. CHAPTER 8. WAVES IN PERIODIC STRUCTURES. Diffraction phenomena. Diffraction by a slit. Diffraction by a one-dimensional lattice. Diffraction by a three-dimensional lattice. Waves in continuous periodic media. Waves in planar layered periodic structures. Photonic crystals. Problems. CHAPTER 9. WAVES IN GUIDING STRUCTURES. Types of guiding structures. Field structure over the conducting plane. Field between two parallel metal planes. Fields in a rectangular waveguide. The waveguide operating conditions. Attenuation of waves in waveguides. Reflections in transmission lines and need of their matching. Two-wire, coaxial, and strip-line transmission lines. Optical waveguides (lightguides). Problems. CHAPTER 10. EMISSION OF
From the B&N Reads Blog

Customer Reviews