An Introduction to Navier-Stokes Equation and Oceanography / Edition 1

An Introduction to Navier-Stokes Equation and Oceanography / Edition 1

by Luc Tartar
ISBN-10:
3540357432
ISBN-13:
9783540357438
Pub. Date:
09/14/2006
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540357432
ISBN-13:
9783540357438
Pub. Date:
09/14/2006
Publisher:
Springer Berlin Heidelberg
An Introduction to Navier-Stokes Equation and Oceanography / Edition 1

An Introduction to Navier-Stokes Equation and Oceanography / Edition 1

by Luc Tartar

Paperback

$49.99 Current price is , Original price is $49.99. You
$49.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

In the spring of 1999, I taught (at CARNEGIEMELLON University) a graduate course entitled Partial Differential Equations Models in Oceanography, and I wrote lecture notes which I distributed to the students; these notes were then made available on the Internet, and they were distributed to the participants of a Summer School held in Lisbon, Portugal, in July 1999. After a few years, I feel it will be useful to make the text available to a larger audience by publishing a revised version. To an uninformed observer, it may seem that there is more interest in the Navier–Stokes equation nowadays, but many who claim to be interested show such a lack of knowledge about continuum mechanics that one may wonder about such a super?cial attraction. Could one of the Clay Millennium Prizes bethereasonbehindthisrenewedinterest?Readingthetextof theconjectures to be solved for winning that particular prize leaves the impression that the subject was not chosen by people interested in continuum mechanics, as the selected questions have almost no physical content. Invariance by translation or scaling is mentioned, but why is invariance by rotations not pointed out 1 andwhyisGalileaninvariance omitted,asitistheessentialfactwhichmakes 1 Velocities involved for ordinary—fluids being much smaller than the velocity of light c, no relativistic corrections are necessary and Galilean invariance should then be used, but one should be aware that once the mathematical equation has been written it is not automatic that its solutions will only use velocities bounded by c.

Product Details

ISBN-13: 9783540357438
Publisher: Springer Berlin Heidelberg
Publication date: 09/14/2006
Series: Lecture Notes of the Unione Matematica Italiana , #1
Edition description: 2006
Pages: 247
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

About the Author

Luc Tartar studied at Ecole Polytechnique in Paris, France, 1965-1967, where he was taught by Laurent Schwartz and Jacques-Louis Lions in mathematics, and by Jean Mandel in continuum mechanics.

He did research at Centre National de la Recherche Scientifique, Paris, France, 1968-1971, working under the direction of Jacques-Louis Lions for his thèse d'état, 1971.

He taught at Université Paris IX-Dauphine, Paris, France, 1971-1974, at University of Wisconsin, Madison, WI, 1974-1975, at Université de Paris-Sud, Orsay, France, 1975-1982.

He did research at Commissariat à l'Energie Atomique, Limeil, France, 1982-1987.

In 1987, he was elected Correspondant de l'Académie des Sciences, Paris, in the section Mécanique.

Since 1987 he has been teaching at Carnegie Mellon University, Pittsburgh, PA, where he has been University Professor of Mathematics since 1994.

Partly in collaboration with François Murat, he has specialized in the development of new mathematical tools for solving the partial differential equations of continuum mechanics (homogenization, compensated compactness, H-measures), pioneering the study of microstructures compatible with the partial differential equations describing the physical balance laws, and the constitutive relations.

He likes to point out the defects of many of the models which are used, as a natural way to achieve the goal of improving our understanding of mathematics and of continuum mechanics.

Table of Contents

Basic physical laws and units.- Radiation balance of atmosphere.- Conservations in ocean and atmosphere.- Sobolev spaces I.- Particles and continuum mechanics.- Conservation of mass and momentum.- Conservation of energy.- One-dimensional wave equation.- Nonlinear effects, shocks.- Sobolev spaces II.- Linearized elasticity.- Ellipticity conditions.- Sobolev spaces III.- Sobolev spaces IV.- Sobolev spaces V.- Sobolev embedding theorem.- Fixed point theorems.- Brouwer's topological degree.- Time-dependent solutions I.- Time-dependent solutions II.- Time-dependent solutions III.- Uniqueness in 2 dimensions.- Traces.- Using compactness.- Existence of smooth solutions.- Semilinear models.- Size of singular sets.- Local estimates, compensated integrability.- Coriolis force.- Equation for the vorticity.- Boundary conditions in linearized elasticity.- Turbulence, homogenization.- G-convergence and H-convergence.- One-dimensional homogenization, Young measures.- Nonlocal effects I.- Nonlocal effects II.- A model problem.- Compensated compactness I.- Compensated compactness II.- Differential forms.- The compensated compactness method.- H-measures and variants.- Biographical Information.- Abbreviations and Mathematical Notation.
From the B&N Reads Blog

Customer Reviews