Comparison Finsler Geometry
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.

Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.

Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

"1139636152"
Comparison Finsler Geometry
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.

Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.

Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

159.99 In Stock
Comparison Finsler Geometry

Comparison Finsler Geometry

by Shin-ichi Ohta
Comparison Finsler Geometry

Comparison Finsler Geometry

by Shin-ichi Ohta

Hardcover(1st ed. 2021)

$159.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area.

Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement.

Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.


Product Details

ISBN-13: 9783030806491
Publisher: Springer International Publishing
Publication date: 10/10/2021
Series: Springer Monographs in Mathematics
Edition description: 1st ed. 2021
Pages: 316
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Shin-ichi Ohta is Distinguished Professor of Mathematics at Osaka University, Japan. His research interests lie in comparison geometry and its applications. He is a leading expert in the geometry and analysis of weighted Ricci curvature.

Table of Contents

I Foundations of Finsler Geometry.- 1. Warm-up: Norms and inner products.- 2. Finsler manifolds.- 3. Properties of geodesics.- 4. Covariant derivatives.- 5. Curvature.- 6. Examples of Finsler manifolds.- 7. Variation formulas for arclength.- 8. Some comparison theorems.- II Geometry and analysis of weighted Ricci curvature.- 9. Weighted Ricci curvature.- 10. Examples of measured Finsler manifolds.- 11. The nonlinear Laplacian.- 12. The Bochner-Weitzenbock formula.- 13. Nonlinear heat flow.- 14. Gradient estimates.- 15. Bakry-Ledoux isoperimetric inequality.- 16. Functional inequalities.- III Further topics.- 17. Splitting theorems.- 18. Curvature-dimension condition.- 19. Needle decompositions.
From the B&N Reads Blog

Customer Reviews