Deep Future: The Next 100,000 Years of Life on Earth

A Kirkus Reviews Best Nonfiction of 2011 title

A bold, far-reaching look at how our actions will decide the planet's future for millennia to come.

Imagine a planet where North American and Eurasian navies are squaring off over shipping lanes through an acidified, ice-free Arctic. Centuries later, their northern descendants retreat southward as the recovering sea freezes over again. And later still, future nations plan how to avert an approaching Ice Age... by burning what remains of our fossil fuels.

These are just a few of the events that are likely to befall Earth and human civilization in the next 100,000 years. And it will be the choices we make in this century that will affect that future more than those of any previous generation. We are living at the dawn of the Age of Humans; the only question is how long that age will last.

Few of us have yet asked, "What happens after global warming?" Drawing upon the latest, groundbreaking works of a handful of climate visionaries, Curt Stager's Deep Future helps us look beyond 2100 a.d. to the next hundred millennia of life on Earth.

1100353854
Deep Future: The Next 100,000 Years of Life on Earth

A Kirkus Reviews Best Nonfiction of 2011 title

A bold, far-reaching look at how our actions will decide the planet's future for millennia to come.

Imagine a planet where North American and Eurasian navies are squaring off over shipping lanes through an acidified, ice-free Arctic. Centuries later, their northern descendants retreat southward as the recovering sea freezes over again. And later still, future nations plan how to avert an approaching Ice Age... by burning what remains of our fossil fuels.

These are just a few of the events that are likely to befall Earth and human civilization in the next 100,000 years. And it will be the choices we make in this century that will affect that future more than those of any previous generation. We are living at the dawn of the Age of Humans; the only question is how long that age will last.

Few of us have yet asked, "What happens after global warming?" Drawing upon the latest, groundbreaking works of a handful of climate visionaries, Curt Stager's Deep Future helps us look beyond 2100 a.d. to the next hundred millennia of life on Earth.

13.49 In Stock
Deep Future: The Next 100,000 Years of Life on Earth

Deep Future: The Next 100,000 Years of Life on Earth

by Curt Stager
Deep Future: The Next 100,000 Years of Life on Earth

Deep Future: The Next 100,000 Years of Life on Earth

by Curt Stager

eBookFirst Edition (First Edition)

$13.49  $17.99 Save 25% Current price is $13.49, Original price is $17.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

A Kirkus Reviews Best Nonfiction of 2011 title

A bold, far-reaching look at how our actions will decide the planet's future for millennia to come.

Imagine a planet where North American and Eurasian navies are squaring off over shipping lanes through an acidified, ice-free Arctic. Centuries later, their northern descendants retreat southward as the recovering sea freezes over again. And later still, future nations plan how to avert an approaching Ice Age... by burning what remains of our fossil fuels.

These are just a few of the events that are likely to befall Earth and human civilization in the next 100,000 years. And it will be the choices we make in this century that will affect that future more than those of any previous generation. We are living at the dawn of the Age of Humans; the only question is how long that age will last.

Few of us have yet asked, "What happens after global warming?" Drawing upon the latest, groundbreaking works of a handful of climate visionaries, Curt Stager's Deep Future helps us look beyond 2100 a.d. to the next hundred millennia of life on Earth.


Product Details

ISBN-13: 9781429990233
Publisher: St. Martin's Publishing Group
Publication date: 03/15/2011
Sold by: Barnes & Noble
Format: eBook
Pages: 300
Sales rank: 535,242
File size: 1 MB

About the Author

CURT STAGER is an ecologist, paleoclimatologist, and science writer with a Ph.D. in biology and geology from Duke University. He has published more than three dozen climate- and ecology-related articles in major journals including Science and Quaternary Research, and has written for popular audiences in periodicals such as National Geographic. He teaches at Paul Smith's College in the Adirondack Mountains of upstate New York and holds a research associate post at the University of Maine's Climate Change Institute, where he investigates the long-term history of climate in Africa, South America, and the polar regions.

Read an Excerpt

Deep Future

The Next 100,000 Years of Life on Earth


By Curt Stager

St. Martin's Press

Copyright © 2011 Curt Stager
All rights reserved.
ISBN: 978-1-4299-9023-3



CHAPTER 1

Stopping the Ice

One can only hope that the expected extremes of the Anthropocene will not lead to conditions that cross the threshold to glaciation.

— Frank Sirocko, paleoclimatologist.


Shockingly long-term climatic changes await us as a result of modern human activity, but examining our effects on the deep future also raises a related question that is well worth considering: what would global climates have been like if we had left our fossil fuels in the ground rather than burning them?

In that alternative reality our descendants would still fret about climate, sea levels, and ice caps but the news would read quite differently from that of today. "There's a massive, destructive climatic change coming, but scientists say that we can stop it if we take appropriate action now. If we go about business as usual, coastal settlements will be destroyed by sea-level shifts and entire nations will be covered with water. Frozen water. But there's still hope. If we simply burn enough fossil fuels, we'll warm the atmosphere enough to delay that icy disaster for thousands of years."

I'm talking about the next ice age. When a paleoecologist like myself thinks about global climate change the exercise is as likely to involve visions of ice-sheet invasions as it is to include greenhouse warming. We still don't know exactly why continent-sized glaciations come and go as they do, but they clearly have a rhythmic quality to them. Natural cyclic pulses take the long line of temperature history and snap it like a whip, looping it into a series of steep coolings and warmings. When viewed from a long-term perspective, major warmings of the past 2 to 3 million years can seem like brief thermal respites when the world came up for air between long icy dives; that's why we call them "interglacials" rather than something that sounds more normal or permanent. The cyclic pattern also suggests that more ice ages await us in the future, so strongly in fact that climate scientists routinely refer to our own postglacial warm phase that we live in today as "the present interglacial." Because of this admittedly unusual perspective, many of the paleoecologists I know balance their concerns about modern climate change with "yes, but it could also be a lot worse."

Although such views are rare outside of narrow academic circles, I believe that they belong in the mainstream. Time perspectives long enough to include ice age prevention are not just the stuff of mind games but potentially important aspects of rational planning for our climatic future. In order to appreciate why this is so, however, it helps to look more deeply than usual into the nature of ice ages.

The last one began about 117,000 years ago and ended 11,700 years ago. During that long and terrible reign of cold, roughly a fifth of the world's land surface resembled the icy interiors of Greenland and Antarctica today, especially in the higher northern latitudes. Most of what is now Canada and northern Europe was smothered under immense sheets of slowly creeping ice up to 2 miles (3 km) thick. The sites of today's Chicago, Boston, and New York were obliterated, and what we now call Long Island is a plowed-up bow wave of detritus that marks the southern limit of the last major ice advance. Entire landscapes sagged under that tremendous weight, pressing down hundreds or even thousands of feet into the planet's softer innards, and the gritty underbelly of the ice gouged deep scratches and grooves into solid bedrock that still scar the formerly glaciated regions of the world.

When you see glacial deposits and ice-scoured rock formations along a northerly roadside or trail, it's easy to let your imagination strip away the towns and trees and crush your surroundings under great, grinding slabs of ice. I envision it quite often near my home in the Adirondack Mountains of upstate New York. Recently I was reminded of the frozen past when I stepped off a woodland path near Saint Regis Mountain to take a closer look at one of the largest glacial erratic boulders I've ever seen.

The massive chunk of gray anorthosite was broader and taller than my house, and the prying fingers of winter frost had plucked garage-sized flakes away from its lichen-crusted flanks. They lay in low heaps around the central body of rock like cast-off clothing. The base of the giant perched just high enough above the ground to leave shadowed crawl spaces below that made me think of of crouching hermits and cave bears. Peering into one of them I scanned its dusky floor for signs of residents but saw only earth-colored gravel. Clean, well-sorted, smoothly rounded gravel, just like the stuff in the shallow streambed nearby. Gravel that was never buried under forest soils or leaf litter and that still looked as fresh as it did when melting ice dropped this gigantic sheltering rock on top of it.

That primeval scene drew my imagination back to when these mountains were still emerging from their long, lightless imprisonment. The rustling beech, maples, and birches before me faded away, along with the duff and dirt beneath them, exposing a desolate brown wasteland of wet sand and pebbles that glistened under a cold clear sky. Not a tree in sight, not a shrub or flower, not even many lichens on the virgin boulders yet. Cloudy silt-laden streams and molten blue pools sparkled in the low spots, and remnant hill-sized blocks of decomposing ice hunkered down in the deeper hollows, sloughing off layers of dusty surface debris like old dogs shedding winter fur. Far off on the northern horizon lay an unfamiliar range of white, mile-high hills, the sun-scored southern face of the melting ice sheet. The vision lasted only a few moments, but a strong feeling of connection to long-ago times when Big Ice ruled this landscape stayed with me through the rest of my hike that day.

Let's continue with this imagination game. What if it happened again?

Here and now in the Adirondacks we worry, with good reason, about the effects of acid rain, invasive species, and global warming on our local ecosystems. But those problems won't exterminate every last Adirondack fish and fowl, and even the most extreme case of Anthropocene heating would still leave the land covered with some sort of greenery, if not all the kinds we're currently used to.

A full glacial advance, on the other hand, is a total wipeout. Every lake is bulldozed or smothered under a thick blanket of cobbles, sand, and gravel. Every sugar maple, every golden-tinted trout lily, every tuft of moss heaves up in bow waves of dirt and stones and is crushed to pulp. Every animal with legs or wings flees southward. The Adirondack peaks vanish under a heavy white tide, the iconic ski jumps at Lake Placid topple and are ground to splinters, and every settlement from Saranac Lake to Old Forge is obliterated.

Meanwhile, farther north, most of Canada disappears. That includes Quebec City, Montreal, Ottawa, Toronto, Winnipeg, Calgary, and Vancouver, not to mention every wild area from Hudson Bay to Banff. From a human perspective, there's no place called Canada for tens of thousands of years except in the same sense that a gigantic frosty slab called Antarctica now squats on the South Pole. And out across the Atlantic, advancing walls of white demolish Dublin, Liverpool, Oslo, Stockholm, Copenhagen, Helsinki, and Saint Petersburg, and every settlement on the rocky coastal rind of Greenland is shoveled into the sea by heavy spatulas of ice.

With much of the world's freshwater imprisoned in frozen form on the continents, sea level falls by as much as 400 vertical feet (120 m). The site of every twenty-first-century port is stranded far inland, the long, slender thumb of Florida doubles in width, and the present location of every shallow-water coral reef in the tropics sprouts weeds and trees. The associated cooling weakens monsoons, locking much of Africa and southern Asia into chronic droughts.

This is what a climate historian is likely to have in mind when discussing climatic change. Compare it to what most experts expect modern warming to bring us in the Anthropocene future and you'll understand why a paleoecologist's panic button might not be so easily pressed.

But wait. Isn't global warming supposed to trigger the next ice age? Isn't that what we saw happen in the apocalyptic enviro-thriller movie The Day After Tomorrow, in which the greenhouse effect suddenly shuts down climatically important ocean currents in the North Atlantic and triggers a superglaciation?

The movie isn't totally wrong, in that the warm Gulf Stream really does help to keep northwestern Europe from becoming cooler than it already is. It's part of a huge global conveyor belt system of interconnected currents that draws solar-heated tropical water into the cold surface of the North Atlantic, where it cools off and then sinks for a deep return journey southward. Some scientists worry that future climatic changes could disrupt that conveyor and trigger a sudden regional cooling; hence the movie scene in which a fierce wind seizes Manhattan with remorseless fangs of frost. But as gripping as that storyline is, serious questions remain about the real role of the conveyor in past and future climate change.

The engine driving the conveyor goes by several dry technical names, most recently the meridional overturning circulation, or MOC. It is also sometimes called THC, an abbreviation that is in no way connected to marijuana smoking (and tetrahydrocannabinol) but rather, reflects the upgrading of a simpler concept, that of thermohaline circulation, whose basic premise is that changes in temperature and saltiness drive major circulation currents of the oceans.

Warm water on the surfaces of the tropical oceans loses moisture to evaporation, which makes it saltier than average seawater. When the Gulf Stream flows from the hot latitudes between West Africa and the Caribbean into the cooler North Atlantic, it doesn't easily mix with those northern waters because its tropical heat content makes it less dense (warming makes both water and air expand). But the Gulf Stream gradually releases much of that heat into the cooler air over the North Atlantic, and when it finally does chill down its extra load of salt leaves it denser than usual.

That extra density makes some of the Gulf Stream water sink beneath the surface and continue its riverlike meanderings at greater depths. By the time it resurfaces, the deep flow has wormed its way around the southern tip of Africa and entered the Indian and Pacific oceans. Back on the surface again, the current recurves back across those oceans, rounds the tip of South Africa, and returns to the North Atlantic, picking up new loads of equatorial warmth along the way. Additional branches also operate in the Southern Ocean and Arabian Sea, adding extra loops to the tortuous path of the global conveyor.

There's a lot more to the picture than that, however, and when illustrations of this common version of the THC concept appear in professional slide presentations, they can become what one speaker at a recent meeting of the British Royal Society called "oceanographer detectors," because they make specialists in the audience "go visibly pale at the vast oversimplification."

The THC model is not so much wrong as incomplete. Most scientists have now switched the focus of ocean-climate discussions to the more comprehensive MOC formulation because temperature and salinity aren't the only drivers of ocean currents after all; winds and tides are at least as influential. THC-style flow does occur, but midlatitude westerly winds and tropical easterly trades do much of the actual pushing.

So why does marine MOC affect climate? As heat rises into the air from the Gulf Stream, it warms the westerly winds that blow toward Europe. Without those ocean-tempered winds, London might be as cold as ... well, look at a map to see what lies at the same latitude on the opposite side of the Atlantic, and you'll find snowy Labrador.

With this basic introduction to the topic, you're already well enough equipped to take a pot shot at The Day After Tomorrow. The prevailing winds over Manhattan blow offshore toward the Atlantic, not from it, so why should a Gulf Stream shutdown freeze the city? The film also unrealistically subjects Europe to severe winter conditions year-round. Even if it really did become a climatic equivalent of Labrador, northern Europe would still warm up quite a bit in summer, just as Labrador does.

In reality, a MOC slowdown alone couldn't turn Europe into a climatic twin of Labrador because it lies downwind of a temperature-modulating ocean rather than the interior of a continent. And because prevailing winds spin the North Atlantic surface current system clockwise regardless of what the salinity or temperature of the water is, some version of the Gulf Stream will exist as long as these winds continue to blow over it.

Although some computer models do simulate moderate conveyor slowdowns in a warmer future, a truly severe disruption would require extremely large floods of freshwater to pour into the sea, presumably from the melting of land-based ice. If, say, a major ice sheet were to slide off into the North Atlantic where some critical sinking zone is operating, then perhaps it might cap the ocean off with dilute, buoyant meltwater.

In 1999, oceanographer Wallace Broecker published a striking theoretical description of just such a total MOC collapse under perfect-storm conditions. Tundra replaces Scandinavian forests. Ireland becomes the climatic equivalent of Spitsbergen, an island in the Norwegian Arctic. When climate modelers working at Britain's Hadley Center several years ago told their computers to "kill the MOC," the virtual air outside their lab cooled by 8°F (5°C) within ten years, at least on the digital screen.

But Broecker maintains that such a scenario is unlikely today, because those theoretical events only played out in a world that had already been cooled by a prolonged ice age. Nowadays, however, we don't have nearly enough readily meltable ice left in the Northern Hemisphere to do the job. To reset that stage we'd have to cover Canada, northern and central Europe, and Scandinavia with thick ice caps, and that would require colder, rather than warmer, conditions in the future.

Most computer models that have been upgraded so they more accurately represent the role of winds in ocean circulation foresee little, if any, cooling in the North Atlantic region from MOC disruptions during the Anthropocene. As the latest Intergovernmental Panel on Climate Change (IPCC) report concluded, "it is very unlikely that the MOC will undergo a large abrupt transition during the 21st century," and most experts believe that future greenhouse warming will overwhelm any minor regional effects related to MOC. In light of such findings, Broecker has tried to tamp down some of the worst exaggerations of the ocean-climate link that have been made by nonspecialists, but it's a tough struggle that pits scientific restraint against the lure of a good story.

One case in point is a study commissioned by the U.S. Department of Defense that presented a wildly extremist view of MOC collapse as a grave and imminent threat to national security. In their 2003 report, the authors noted that they were presenting only the most severe of all possibilities, as is commonly done in military planning circles, but that disclaimer was easily missed amid the frightening scenarios that followed. In their depictions, global average temperature shoots up faster and faster until, in 2010 AD, the MOC begins to collapse. Less than ten years later, according to their model, northern Europe cools by 5 to 6°F (3°C), devastating drought strikes the United States, and "a cold and hungry China peers jealously across the Russian and western borders at energy resources."

In response, Broecker wrote an open letter for publication in Science that expressed his dismay over the hyperbole. "I take serious issue with both the timing and the severity of the changes proposed," he wrote, pointing out that such extreme changes would take a long time to develop and would require glacial-type conditions, not global warming, to trigger them. Furthermore, he cautioned that computer models still can't fully reconstruct complex MOC disturbances of the past, much less those of the future. He concluded his letter with this admonition: "Exaggerated scenarios serve only to intensify the existing polarization over global warming."

Nonetheless, the idea of a total collapse of MOC is so emotionally gripping that it has become firmly lodged in public consciousness. In that context, oceanographers are watching closely for signs of conveyor responses to modern warming, just to be on the safe side. In 2005, for example, a team of British researchers described a 30 percent slowdown in MOC flow since 1957. The news caught fire among lay and professional audiences alike, but follow-up studies found that the slowdown alert was a "false alarm," as Richard Kerr put it in a deflating news brief for Science. The pattern of MOC flow is extremely variable, and a more careful look at the numbers showed that the reported trend was indistinguishable from random fluctuations.


(Continues...)

Excerpted from Deep Future by Curt Stager. Copyright © 2011 Curt Stager. Excerpted by permission of St. Martin's Press.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Contents

Title Page,
Dedication,
Prologue,
1. Stopping the Ice,
2. Beyond Global Warming,
3. The Last Great Thaw,
4. Life in a Super-Greenhouse,
5. Future Fossils,
6. Oceans of Acid,
7. The Rising Tide,
8. An Ice-Free Arctic,
9. The Greening of Greenland,
10. What About the Tropics?,
11. Bringing It Home,
Epilogue,
References,
Index,
Acknowledgments,
Also by Curt Stager,
Copyright,

From the B&N Reads Blog

Customer Reviews