Finite Element Method: Basic Technique and Implementation
Originally developed to address specific areas of structural mechanics and elasticity, the finite element method is applicable to problems throughout applied mathematics, continuum mechanics, engineering, and physics. This text elucidates the method's broader scope, bridging the gap between mathematical foundations and practical applications. Intended for students as well as professionals, it is an excellent companion for independent study, with numerous illustrative examples and problems.
The authors trace the method's development and explain the technique in clearly understandable stages. Topics include solving problems involving partial differential equations, with a thorough finite element analysis of Poisson's equation; a step-by-step assembly of the master matrix; various numerical techniques for solving large systems of equations; and applications to problems in elasticity and the bending of beams and plates. Additional subjects include general interpolation functions, numerical integrations, and higher-order elements; applications to second- and fourth-order partial differential equations; and a variety of issues involving elastic vibrations, heat transfer, and fluid flow. The displacement model is fully developed, in addition to the hybrid model, of which Dr. Tong was an originator. The text concludes with numerous helpful appendixes.
1111329090
Finite Element Method: Basic Technique and Implementation
Originally developed to address specific areas of structural mechanics and elasticity, the finite element method is applicable to problems throughout applied mathematics, continuum mechanics, engineering, and physics. This text elucidates the method's broader scope, bridging the gap between mathematical foundations and practical applications. Intended for students as well as professionals, it is an excellent companion for independent study, with numerous illustrative examples and problems.
The authors trace the method's development and explain the technique in clearly understandable stages. Topics include solving problems involving partial differential equations, with a thorough finite element analysis of Poisson's equation; a step-by-step assembly of the master matrix; various numerical techniques for solving large systems of equations; and applications to problems in elasticity and the bending of beams and plates. Additional subjects include general interpolation functions, numerical integrations, and higher-order elements; applications to second- and fourth-order partial differential equations; and a variety of issues involving elastic vibrations, heat transfer, and fluid flow. The displacement model is fully developed, in addition to the hybrid model, of which Dr. Tong was an originator. The text concludes with numerous helpful appendixes.
19.95 In Stock
Finite Element Method: Basic Technique and Implementation

Finite Element Method: Basic Technique and Implementation

Finite Element Method: Basic Technique and Implementation

Finite Element Method: Basic Technique and Implementation

Paperback

$19.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Originally developed to address specific areas of structural mechanics and elasticity, the finite element method is applicable to problems throughout applied mathematics, continuum mechanics, engineering, and physics. This text elucidates the method's broader scope, bridging the gap between mathematical foundations and practical applications. Intended for students as well as professionals, it is an excellent companion for independent study, with numerous illustrative examples and problems.
The authors trace the method's development and explain the technique in clearly understandable stages. Topics include solving problems involving partial differential equations, with a thorough finite element analysis of Poisson's equation; a step-by-step assembly of the master matrix; various numerical techniques for solving large systems of equations; and applications to problems in elasticity and the bending of beams and plates. Additional subjects include general interpolation functions, numerical integrations, and higher-order elements; applications to second- and fourth-order partial differential equations; and a variety of issues involving elastic vibrations, heat transfer, and fluid flow. The displacement model is fully developed, in addition to the hybrid model, of which Dr. Tong was an originator. The text concludes with numerous helpful appendixes.

Product Details

ISBN-13: 9780486466767
Publisher: Dover Publications
Publication date: 05/19/2008
Series: Dover Books on Engineering Series
Pages: 352
Product dimensions: 5.30(w) x 8.40(h) x 0.70(d)

Table of Contents


Preface
1. The Finite-Element Method
2. The Finite-Element Method for Poisson's Equation
3. Assembly and Solution for Large Systems
4. Implementation of Assembly and Solution Schemes for Large Systems on High-Speed Computers
5. Applications to Solid Mechanics
6. Interpolation Functions, Numerical Integration, and Higher-Order Elements
7. Bending of Beams and Plates
8. Hybrid Methods
9. Selected Topics and Recent Developments
Appendix A. Notation and Matrix Algebra
Appendix B. Rectangular Elements
Appendix C. Triangular Elements with Straight Edges
Appendix D. Variational Methods
References
Index
From the B&N Reads Blog

Customer Reviews