Fundamentals in Modeling and Control of Mobile Manipulators
Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.
1133955858
Fundamentals in Modeling and Control of Mobile Manipulators
Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.
78.99 In Stock
Fundamentals in Modeling and Control of Mobile Manipulators

Fundamentals in Modeling and Control of Mobile Manipulators

Fundamentals in Modeling and Control of Mobile Manipulators

Fundamentals in Modeling and Control of Mobile Manipulators

eBook

$78.99  $105.00 Save 25% Current price is $78.99, Original price is $105. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.

Product Details

ISBN-13: 9781040060209
Publisher: CRC Press
Publication date: 04/19/2016
Series: ISSN
Sold by: Barnes & Noble
Format: eBook
Pages: 295
File size: 2 MB

About the Author

Zhijun Li is a professor in the College of Automation Science and Engineering at the South China University of Technology. Dr. Li is an IEEE Senior Member. He is an editor of the Journal of Intelligent and Robotic Systems. His current research interests include adaptive/robust control, mobile manipulators, and nonholonomic systems.

Shuzhi Sam Ge is a professor in the Department of Electrical and Computer Engineering and director of the Social Robotics Laboratory, Interactive Digital Media Institute, at the National University of Singapore, and director of the Robotics Institute at the University of Electronic Science and Technology of China in Chengdu. He has co-authored five books and published more than 300 international journal and conference papers. He has been an associate editor for IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems Technology, IEEE Transactions on Neural Networks, and is currently an associate editor for Automatica, as well as an editor for International Journal of Social Robotics, International Journal of Control, Automation & Systems, and the Taylor & Francis Automation and Control Engineering Series. His current research interests include social robotics, adaptive control, hybrid systems, and intelligent systems.

Table of Contents

Introduction: Mobile Manipulator Systems. Background and Motivations. Outline of the Book. Kinematics and Dynamics: Introduction. Kinematics of Mobile Platform. Kinematics of Robotic Manipulators. Dynamics of Mobile Manipulators. Dynamics in Cartesian Space. Conclusion. Path Planning and Motion Generation: Path Planning of Mobile Manipulators. Path Planning of Coordinated Mobile Manipulators. Conclusion. Model-Based Control: Introduction. System Description. Model Reference Control. Simulation Studies. Conclusion. Adaptive Robust Hybrid Motion/Force Control: Adaptive Robust Hybrid Motion/Force Control. Adaptive Robust Output-feedback Control with Actuator Dynamics. Adaptive Robust Hybrid Position/Force Control. Conclusion. Under-actuated Control: Introduction. System Description. High-gain Observer. Adaptive Output Feedback Control. Simulation Studies. Conclusion. Coordination Control: Centralized Coordination Control. Decentralized Coordination. Conclusion. Cooperation Control: Introduction. Description of Interconnected System. Centralized Robust Adaptive Controls Design. Simulation Studies. Conclusion. Appendix: Example of 2-DOF Wheeled Mobile Manipulator. Example of 3-DOF Mobile Manipulator. Bibliography. Index.
From the B&N Reads Blog

Customer Reviews