Handbook of Financial Econometrics: Tools and Techniques

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume.

  • Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity
  • Contributors include Nobel Laureate Robert Engle and leading econometricians
  • Offers a clarity of method and explanation unavailable in other financial econometrics collections
1139968436
Handbook of Financial Econometrics: Tools and Techniques

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume.

  • Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity
  • Contributors include Nobel Laureate Robert Engle and leading econometricians
  • Offers a clarity of method and explanation unavailable in other financial econometrics collections
123.99 In Stock
Handbook of Financial Econometrics: Tools and Techniques

Handbook of Financial Econometrics: Tools and Techniques

Handbook of Financial Econometrics: Tools and Techniques

Handbook of Financial Econometrics: Tools and Techniques

eBook

$123.99  $165.00 Save 25% Current price is $123.99, Original price is $165. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume.

  • Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity
  • Contributors include Nobel Laureate Robert Engle and leading econometricians
  • Offers a clarity of method and explanation unavailable in other financial econometrics collections

Product Details

ISBN-13: 9780080929842
Publisher: Elsevier Science
Publication date: 10/19/2009
Series: ISSN , #1
Sold by: Barnes & Noble
Format: eBook
Pages: 808
File size: 9 MB

About the Author

Lars Peter Hansen is David Rockefeller Distinguished Service Professor at the University of Chicago, and is an internationally known leader in economic dynamics. Hansen guides the scholarly direction of the Becker Friedman Institute and chairs the Institute Research Council. He was one of the forces behind the 2008 creation of the Milton Friedman Institute, the predecessor of the Becker Friedman Institute, and served as its founding director. He was one of three in 2013 to be awarded The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel along with Eugene F. Fama and Robert J. Shiller "for their empirical analysis of asset prices."

Hansen’s work explores formal implications of dynamic economic models in which decision makers face uncertain environments. The main theme of his research has been to devise and apply econometric methods that are consistent with the probabilistic framework of the economic models under investigation. His work has implications for consumption, savings investment, and asset pricing. Hansen's early research in econometrics was aimed at developing time series statistical methods to investigate one part of an economic model without having to fully specify and estimate all of the model ingredients. The applications he explored with several coauthors included systems that are rich enough to support models of asset valuation and to identify and clarify empirical puzzles, where real-world financial and economic data were at odds with prevailing academic models. He continues to explore, analyze, and interpret implications of dynamic economic models in environments with uncertainty from a time-series perspective. His recent research explores ways to quantify intertemporal risk-return tradeoffs and ways to model economic behavior when decision makers are uncertain about how to forecast future economic events.

Hansen won the 2010 BBVA Foundation Frontiers of Knowledge Award in the Economics, Finance and Management “for making fundamental contributions to our understanding of how economic actors cope with risky and changing environments.” He also received the CME Group-MSRI Prize in Innovative Quantitative Applications in 2008 and the Erwin Plein Nemmers Prize in Economics from Northwestern University in 2006. Hansen is a fellow of the National Academy of Sciences and the American Finance Association. He also is a member of the American Academy of Arts and Sciences and past president of the Econometric Society.

Hansen is the editor of two Elsevier publications – Handbook of Financial Econometrics, Volume 1, Tools; and Handbook of Financial Econometrics, Volume 2, Applications.

Read an Excerpt

Handbook of FINANCIAL ECONOMETRICS, Vol 1

Tools and Techniques

North-Holland

Copyright © 2010 Elsevier B.V.
All right reserved.

ISBN: 978-0-08-092984-2

Contents

List of Contributors....................xxv
1 Operator Methods for Continuous-Time Markov Processes Yacine Aït-Sahalia, Lars Peter Hansen, and José A. Scheinkman....................1
2 Parametric and Nonparametric Volatility Measurement Torben G. Andersen, Tim Bollerslev, and Francis X. Diebold....................67
3 Nonstationary Continuous-Time Processes Federico M. Bandi and Peter C. B. Phillips....................139
4 Estimating Functions for Discretely Sampled Diffusion-Type Models Bo Martin Bibby, Martin Jacobsen, and Michael Sørensen....................203
5 Portfolio Choice Problems Michael W. Brandt....................269
6 Heterogeneity and Portfolio Choice: Theory and Evidence Stephanie Curcuru, John Heaton, Deborah Lucas, and Damien Moore....................337
7 Analysis of High-Frequency Data Jeffrey R. Russell and Robert F. Engle....................383
8 Simulated Score Methods and Indirect Inference for Continuous-time Models A. Ronald Gallant and George Tauchen....................427
9 The Econometrics of Option Pricing René Garcia, Eric Ghysels, and Eric Renault....................479
10 Value at Risk Christian Gourieroux and Joann Jasiak....................553
11 Measuring and Modeling Variation in the Risk-Return Trade-off Martin Lettau and Sydney C. Ludvigson....................617
12 Affine Term Structure Models Monika Piazzesi....................691
Index....................767

Chapter One

Operator Methods for Continuous-Time Markov Processes

Contents

1. Introduction 2 2. Alternative Ways to Model a Continuous-Time Markov Process 3 2.1. Transition Functions 3 2.2. Semigroup of Conditional Expectations 4 2.3. Infinitesimal Generators 5 2.4. Quadratic Forms 7 2.5. Stochastic Differential Equations 8 2.6. Extensions 8 3. Parametrizations of the Stationary Distribution: Calibrating the Long Run 11 3.1. Wong's Polynomial Models 12 3.2. Stationary Distributions 14 3.3. Fitting the Stationary Distribution 15 3.4. Nonparametric Methods for Inferring Drift or Diffusion Coefficients 18 4. Transition Dynamics and Spectral Decomposition 20 4.1. Quadratic Forms and Implied Generators 21 4.2. Principal Components 24 4.3. Applications 30 5. Hermite and Related Expansions of a Transition Density 36 5.1. Exponential Expansion 36 5.2. Hermite Expansion of the Transition Function 37 5.3. Local Expansions of the Log-Transition Function 40 6. Observable Implications and Tests 45 6.1. Local Characterization 45 6.2. Total Positivity and Testing for Jumps 47 6.3. Principal Component Approach 48 6.4. Testing the Specification of Transitions 49 6.5. Testing Markovianity 52 6.6. Testing Symmetry 53 6.7. Random Time Changes 54 7. The Properties of Parameter Estimators 55 7.1. Maximum Likelihood Estimation 55 7.2. Estimating the Diffusion Coefficient in the Presence of Jumps 57 7.3. Maximum Likelihood Estimation with Random Sampling Times 58 8. Conclusions 61 Acknowledgments 62 References 62

Abstract

This chapter surveys relevant tools, based on operator methods, to describe the evolution in time of continuous-time stochastic process, over different time horizons. Applications include modeling the long-run stationary distribution of the process, modeling the short or intermediate run transition dynamics of the process, estimating parametric models via maximum-likelihood, implications of the spectral decomposition of the generator, and various observable implications and tests of the characteristics of the process.

Keywords: Markov process; Infinitesimal Generator; Spectral decomposition; Transition density; Maximum-Likelihood; Stationary density; Long-run.

1. INTRODUCTION

Our chapter surveys a set of mathematical and statistical tools that are valuable in understanding and characterizing nonlinear Markov processes. Such processes are used extensively as building blocks in economics and finance. In these literatures, typically the local evolution or short-run transition is specified. We concentrate on the continuous limit in which case it is the instantaneous transition that is specified. In understanding the implications of such a modeling approach we show how to infer the intermediate and long-run properties from the short-run dynamics. To accomplish this, we describe operator methods and their use in conjunction with continuous-time stochastic process models.

Operator methods begin with a local characterization of the Markov process dynamics. This local specification takes the form of an infinitesimal generator. The infinitesimal generator is itself an operator mapping test functions into other functions. From the infinitesimal generator, we construct a family (semigroup) of conditional expectation operators. The operators exploit the time-invariant Markov structure. Each operator in this family is indexed by the forecast horizon, the interval of time between the information set used for prediction and the object that is being predicted. Operator methods allow us to ascertain global, and in particular, long-run implications from the local or infinitesimal evolution. These global implications are reflected in (a) the implied stationary distribution, (b) the analysis of the eigen functions of the generator that dominate in the long run, and (c) the construction of likelihood expansions and other estimating equations.

The methods we describe in this chapter are designed to show how global and long-run implications follow from local characterizations of the time series evolution. This connection between local and global properties is particularly challenging for nonlinear time series models. Despite this complexity, the Markov structure makes characterizations of the dynamic evolution tractable. In addition to facilitating the study of a given Markov process, operator methods provide characterizations of the observable implications of potentially rich families of such processes. These methods can be incorporated into statistical estimation and testing. Although many Markov processes used in practice are formally misspecificied, operator methods are useful in exploring the specific nature and consequences of this misspecification.

Section 2 describes the underlying mathematical methods and notation. Section 3 studies Markov models through their implied stationary distributions. Section 4 develops some operator methods used to characterize transition dynamics including long-run behavior of Markov process. Section 5 provides approximations to transition densities that are designed to support econometric estimation. Section 6 describes the properties of some parameter estimators. Finally, Section 7 investigates alternative ways to characterize the observable implications of various Markov models, and to test those implications.

2. ALTERNATIVE WAYS TO MODEL A CONTINUOUS-TIME MARKOV PROCESS

There are several different but essentially equivalent ways to parameterize continuous time Markov processes, each leading naturally to a distinct estimation strategy. In this section, we briefly describe five possible parametrizations.

2.1. Transition Functions

In what follows, (Ω, F, Pr) will denote a probability space, S a locally compact metric space with a countable basis, S a σ-field of Borelians in S, I an interval of the real line, and for each t [member of] I , Xt: (Ω, F, Pr) [right arrow] (S, S) a measurable function. We will refer to (S, S) as the state space and to X as a stochastic process.

Definition 1 P : (S x S) [right arrow] [0, 1) is a transition probability if, for each x [member of] S, P(x, *) is a probability measure in S, and for each B [member of] S, P(·, B) is measurable.

Definition 2 A transition function is a family Ps,t, (s, t) [member of] I2, s < t that satisfies for each s < t < u the Chapman–Kolmogorov equation:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

A transition function is time homogeneous if Ps,t = Ps',t' whenever t - s = t' - s'. In this case we write Pt-s instead of Ps,t.

Definition 3 Let Ft [subset] F be an increasing family of σ-algebras, and X a stochastic process that is adapted to Ft. X is Markov with transition function Ps,t if for each nonnegative Borel measurable φ : S [right arrow] R and each (s, t) [member of] I2, s < t,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

The following standard result (for example, Revuz and Yor, 1991; Chapter 3,Theorem 1.5) allows one to parameterize Markov processes using transition functions.

Theorem 1 Given a transition function Ps,t on (S, S) and a probability measure Q0 on (S, S), there exists a unique probability measure Pr on (S[0,∞), S[0,∞), such that the coordinate process X is Markov with respect to σ(Xu, u [less than or equal to] t), with transition function Ps,t and the distribution of X0 given by Q0.

We will interchangeably call transition function the measure Ps,t or its conditional density p (subject to regularity conditions which guarantee its existence):

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

In the time homogenous case, we write Δ = t - s and p(y|x, Δ). In the remainder of this chapter, unless explicitly stated, we will treat only the case of time homogeneity.

2.2. Semigroup of Conditional Expectations

Let Pt be a homogeneous transition function and L be a vector space of real-valued functions such that for each φ [member of] L, ∫(y)Pt(x, dy) [member of] L. For each t define the conditional expectation operator

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2.1)

The Chapman–Kolmogorov equation guarantees that the linear operators Tt satisfy:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2.2)

This suggests another parameterization for Markov processes. Let (L, || · ||) be a Banach space.

Definition 4 A one-parameter family of linear operators in L, {Tt : t [greater than or equal to] 0} is called a semigroup if (a) T0 = I and (b) Tt+s = TtTs for all s, t [greater than or equal to] 0. {Tt : t [greater than or equal to] 0} is a strongly continuous contraction semigroup if, in addition, (c) [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

If a semigroup represents conditional expectations, then it must be positive, that is, if φ [greater than or equal to] 0 then Ttφ [greater than or equal to] 0.

Two useful examples of Banach spaces L to use in this context are as follows:

Example 1 Let S be a locally compact and separable state space. Let L = C0 be the space of continuous functions φ : S [right arrow] R, that vanish at infinity. For φ [member of] C0 define:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

A strongly continuous contraction positive semigroup on C0 is called a Feller semigroup.

Example 2 Let Q be a measure on a locally compact subset S of Rm. Let L2(Q) be the space of all Borel measurable functions φ : S [right arrow] R that are square integrable with respect to the measure Q endowed with the norm:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

In general, the semigroup of conditional expectations determine the finite-dimensional distributions of the Markov process (see e.g. Ethier and Kurtz, 1986; Proposition 1.6 of Chapter 4.) There are also many results (e.g. Revuz and Yor, 1991; Proposition 2.2 of Chapter 3) concerning whether given a contraction semigroup one can construct a homogeneous transition function such that Eq. (2.1) is satisfied.

(Continues...)



Excerpted from Handbook of FINANCIAL ECONOMETRICS, Vol 1 Copyright © 2010 by Elsevier B.V. . Excerpted by permission of North-Holland. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

1. Operator Methods for Continuous-Time Markov Processes- Yacine Aït-Sahalia, Lars Peter Hansen

2. Parametric and Nonparametric Volatility Measurement- Torben G. Andersen, Tim Bollerslev, Francis Diebold

3. Nonstationary Continuous-Time Processes- Federico M. Bandi, Peter C.B. Phillips

4. Estimating Functions for Discretely Sampled Diffusion-Type Models- Bo M. Bibby, Martin Jacobsen, Michael Sørensen

5. Portfolio Choice Problems- Michael W. Brandt

6. Heterogeneity and Portfolio Choice: Theory and Evidence- Stephanie E. Curcuru, J. Heaton, Deborah Lucas, Damien Moore

7. Analysis of High Frequency Data- Robert F. Engle, Jeffrey R. Russell

8. Simulated Score Methods and Indirect Inference for Continuous-time Models- A. Ronald Gallant, G. Tauchen

9. The Econometrics of Option Pricing- Rene Garcia, E. Ghysels, Eric Renault

10. Value at Risk- Christian Gourieroux, J. Jasiak

11. Measuring and Modeling Variation in the Risk-Return Tradeoff- Martin Lettau, Sidney C. Ludvigson

12. Affine Term Structure Models- Monika Piazzesi

What People are Saying About This

From the Publisher

Presents broad and eclectic surveys of techniques and tools of financial econometrics.

From the B&N Reads Blog

Customer Reviews