Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms / Edition 1

Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms / Edition 1

ISBN-10:
1402048254
ISBN-13:
9781402048258
Pub. Date:
07/28/2006
Publisher:
Springer Netherlands
ISBN-10:
1402048254
ISBN-13:
9781402048258
Pub. Date:
07/28/2006
Publisher:
Springer Netherlands
Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms / Edition 1

Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms / Edition 1

Hardcover

$169.99
Current price is , Original price is $169.99. You
$169.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

We are presently observing a paradigm change in designing complex SoC as it occurs roughly every twelve years due to the exponentially increasing number of transistors on a chip. This design discontinuity, as all previous ones, is characterized by a move to a higher level of abstraction. This is required to cope with the rapidly increasing design costs. While the present paradigm change shares the move to a higher level of abstraction with all previous ones, there exists also a key difference. For the first time shrinking geometries do not leadtoacorrespondingincreaseofperformance. InarecenttalkLisaSuofIBM pointed out that in 65nm technology only about 25% of performance increase can be attributed to scaling geometries while the lion share is due to innovative processor architecture [1]. We believe that this fact will revolutionize the entire semiconductor industry. What is the reason for the end of the traditional view of Moore’s law? It is instructive to look at the major drivers of the semiconductor industry: wireless communications and multimedia. Both areas are characterized by a rapidly increasingdemandofcomputationalpowerinordertoprocessthesophisticated algorithmsnecessarytooptimallyutilizethepreciousresourcebandwidth. The computational power cannot be provided by traditional processor architectures and shared bus type of interconnects. The simple reason for this fact is energy efficiency: there exist orders of magnitude between the energy efficiency of an algorithm implemented as a fixed functionality computational element and of a software implementation on a processor.

Product Details

ISBN-13: 9781402048258
Publisher: Springer Netherlands
Publication date: 07/28/2006
Edition description: 2006
Pages: 186
Product dimensions: 6.40(w) x 9.40(h) x 0.80(d)

Table of Contents

Foreword. Preface.- 1. Introduction.- 2. Embedded SOC Applications.- 3. Classification of Platform Elements.- 4. System Level Design Principles.- 5. Related Work.- 6. Methodology Overview.- 7. Unified Timing Model.- 8. MP-SOC Simulation Framework.- 9. Case Study.- 10. Summary.- Appendices. A: The OSCI TLM Standard. B: The OCPIP TL3 Channel. C: The Architects View Framework.- List of Figures. List of Tables. References.- Index.

From the B&N Reads Blog

Customer Reviews