Introduction to Nonimaging Optics

Introduction to Nonimaging Optics

by Julio Chaves
ISBN-10:
1420054295
ISBN-13:
9781420054293
Pub. Date:
05/19/2008
Publisher:
Taylor & Francis
ISBN-10:
1420054295
ISBN-13:
9781420054293
Pub. Date:
05/19/2008
Publisher:
Taylor & Francis
Introduction to Nonimaging Optics

Introduction to Nonimaging Optics

by Julio Chaves

Hardcover

$188.95 Current price is , Original price is $188.95. You
$188.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

The world's insatiable consumption of energy must be met with new, environmentally conscious technologies. The relatively young field of nonimaging optics greatly contributes to the development of these technologies, as it is an ideal tool for designing optimized solar energy collectors and illumination optics.

Introduction to Nonimaging Optics provides the first entry-level resource on this rapidly developing field. The book is divided into two sections: the first one deals with nonimaging optics-its main concepts and design methods. The second summarizes general concepts, including rays and wave fronts, reflection and refraction, and symmetry. The author makes a point of relating nonimaging optics to other popular fields, such as thermodynamics, radiometry, photometry, radiation heat transfer, and classical mechanics. He also provides useful examples at the end of each chapter.

Introduction to Nonimaging Optics invites newcomers to explore a growing field and delivers a comprehensive reference to those already working in optics and illumination engineering as well as solar energy collection and concentration.


Product Details

ISBN-13: 9781420054293
Publisher: Taylor & Francis
Publication date: 05/19/2008
Series: Optical Science and Engineering Series
Edition description: Older Edition
Pages: 560
Product dimensions: 6.10(w) x 9.30(h) x 1.40(d)

About the Author

Julio Chaves completed his undergraduate studies in physics engineering at the Higher Technical Institute, Technical University of Lisbon, Portugal in 1995. He received his Ph.D in physics from the same institute. Dr. Chaves did postgraduate work at the Solar Energy Institute, Technical University of Madrid, Spain in 2002, and in 2003, he joined Light Prescriptions Innovators (LPI), LLC, Altadena, California, USA. In 2006, he moved back to Madrid, Spain, and has been working with LPI since. Dr. Chaves developed the new concepts of stepped flow-line optics and ideal light confinement by caustics (caustics as flow lines). He is the co-inventor of several patents and the coauthor of many papers in the field of nonimaging optics. He also participated in the early development of the simultaneous multiple surface design method in three-dimensional geometry.

Table of Contents


Foreword     xv
Preface     xvii
Acknowledgments     xix
Author     xxi
List of Symbols     xxiii
List of Abbreviations and Terms     xxv
Nonimaging Optics     1
Fundamental Concepts     3
Introduction     3
Imaging and Nonimaging Optics     3
The Compound Parabolic Concentrator     8
Maximum Concentration     17
Examples     22
References     23
Design of Two-Dimensional Concentrators     25
Introduction     25
Concentrators for Sources at a Finite Distance     25
Concentrators for Tubular Receivers     27
Angle Transformers     29
The String Method     30
Optics with Dielectrics     35
Asymmetrical Optics     37
Examples     41
References     52
Etendue and the Winston-Welford Design Method     55
Introduction     55
Conservation of Etendue     57
Nonideal Optical Systems     63
Etendue as a Geometrical Quantity     65
Two-Dimensional Systems     68
Etendue asan Integral of the Optical Momentum     70
Etendue as a Volume in Phase Space     75
Etendue as a Difference in Optical Path Length     78
Flow Lines     83
The Winston-Welford Design Method     87
Caustics as Flow Lines     99
Maximum Concentration     102
Etendue and the Shape Factor     106
Examples     110
References     115
Vector Flux     117
Introduction     117
Definition of Vector Flux     121
Vector Flux as a Bisector of the Edge Rays     126
Vector Flux and Etendue     127
Vector Flux for Disk-Shaped Lambertian Sources     129
Design of Concentrators Using the Vector Flux     134
Examples     136
References     138
Combination of Primaries with Flow-Line Secondaries     139
Introduction     139
Reshaping the Receiver     141
Compound Elliptical Concentrator Secondary     145
Truncated Trumpet Secondary     148
Trumpet Secondary for a Large Receiver     150
Secondaries with Multiple Entry Apertures     152
Tailored Edge Ray Concentrators Designed for Maximum Concentration     156
Tailored Edge Ray Concentrators Designed for Lower Concentration     165
Fresnel Primaries     168
Tailored Edge Ray Concentrators for Fresnel Primaries     171
Examples     178
References     191
Stepped Flow-Line Nonimaging Optics     193
Introduction     193
Compact Concentrators     193
Concentrators with Gaps     200
Examples     206
References     209
Luminaires     211
Introduction     211
Luminaires for Large Source and Flat Mirrors     212
The General Approach for Flat Sources     224
Far-Edge Diverging Luminaires for Flat Sources     227
Far-Edge Converging Luminaires for Flat Sources     230
Near-Edge Diverging Luminaires for Flat Sources     234
Near-Edge Converging Luminaires for Flat Sources     239
Luminaires for Circular Sources     241
Examples     255
Appendix A: Mirror Differential Equation for Linear Sources     266
Appendix B: Mirror Differential Equation for Circular Sources     268
References     270
Minano-Benitez Design Method (Simultaneous Multiple Surface)      271
Introduction     271
The RR Optic     273
The XR, RX, and XX Optics     291
The Minano-Benitez Design Method with Generalized Wave Fronts     300
The RXI Optic     306
Other Types of Simultaneous Multiple Surface Optics     313
Examples     313
References     324
The Minano Design Method Using Poisson Brackets     325
Introduction     325
Design of Two-Dimensional Concentrators for Inhomogeneous Media     325
Edge Rays as a Tubular Surface in Phase Space     329
Poisson Brackets     335
Curvilinear Coordinate System     338
Design of Two-Dimensional Concentrators     340
An Example of an Ideal Two-Dimensional Concentrator     342
Design of Three-Dimensional Concentrators     349
An Example of an Ideal Three-Dimensional Concentrator     355
References     358
Geometrical Optics     361
Lagrangian and Hamiltonian Geometrical Optics     363
Fermat's Principle     363
Lagrangian and Hamiltonian Formulations     370
Optical Lagrangian and Hamiltonian     374
Another Form for the Hamiltonian Formulation      378
Change of Coordinate System in the Hamilton Equations     382
References     388
Rays and Wave Fronts     389
Optical Momentum     389
The Eikonal Equation     394
The Ray Equation     395
Optical Path Length between Two Wave Fronts     397
References     401
Reflection and Refraction     403
Reflected and Refracted Rays     403
The Laws of Reflection and Refraction     409
References     413
Symmetry     415
Conservation of Momentum and Apparent Refractive Index     415
Linear Symmetry     418
Circular Symmetry and Skew Invariant     420
References     429
Etendue in Phase Space     431
Etendue and the Point Characteristic Function     431
Etendue in Hamiltonian Optics     434
References     437
Classical Mechanics and Geometrical Optics     439
Fermat's Principle and Maupertuis' Principle     439
Skew Invariant and Conservation of Angular Momentum     443
Potential in Mechanics and Refractive Index in Optics     444
References     444
Radiometry, Photometry, and Radiation Heat Transfer     447
Definitions     447
Conservation of Radiance in Homogeneous Media     450
Conservation of Basic Radiance in (Specular) Reflections and Refractions     453
Etendue and Shape Factor     457
Two-Dimensional Systems     460
Illumination of a Plane     463
References     466
Plane Curves     467
General Considerations     467
Parabola     471
Ellipse     474
Hyperbola     475
Conics     477
Involute     478
Winding Macrofocal Parabola     480
Unwinding Macrofocal Parabola     483
Winding Macrofocal Ellipse     485
Unwinding Macrofocal Ellipse     488
Cartesian Oval for Parallel Rays     490
Cartesian Oval for Converging or Diverging Rays     492
Cartesian Ovals Calculated Point by Point     500
Equiangular Spiral     502
Function Definitions     504
References     512
Index     513

What People are Saying About This

From the Publisher

“…a clear, self-contained and well organized introduction to Nonimaging Optics….will strongly contribute to the spread and understanding of Nonimaging Optics, helping engineers to find better solutions to many optical design problems where the transfer of light energy is critical.”
—Juan C. Minaño and Pablo Benítez, Technical University of Madrid UPM, CEDINT, Spain, from the Foreword

From the B&N Reads Blog

Customer Reviews