Logic for Learning: Learning Comprehensible Theories from Structured Data
This book is concerned with the rich and fruitful interplay between the fields of computational logic and machine learning. The intended audience is senior undergraduates, graduate students, and researchers in either of those fields. For those in computational logic, no previous knowledge of machine learning is assumed and, for those in machine learning, no previous knowledge of computational logic is assumed. The logic used throughout the book is a higher-order one. Higher-order logic is already heavily used in some parts of computer science, for example, theoretical computer science, functional programming, and hardware verification, mainly because of its great expressive power. Similar motivations apply here as well: higher-order functions can have other functions as arguments and this capability can be exploited to provide abstractions for knowledge representation, methods for constructing predicates, and a foundation for logic-based computation. The book should be of interest to researchers in machine learning, espe­ cially those who study learning methods for structured data. Machine learn­ ing applications are becoming increasingly concerned with applications for which the individuals that are the subject of learning have complex structure. Typical applications include text learning for the World Wide Web and bioinformatics. Traditional methods for such applications usually involve the extraction of features to reduce the problem to one of attribute-value learning.
1117669974
Logic for Learning: Learning Comprehensible Theories from Structured Data
This book is concerned with the rich and fruitful interplay between the fields of computational logic and machine learning. The intended audience is senior undergraduates, graduate students, and researchers in either of those fields. For those in computational logic, no previous knowledge of machine learning is assumed and, for those in machine learning, no previous knowledge of computational logic is assumed. The logic used throughout the book is a higher-order one. Higher-order logic is already heavily used in some parts of computer science, for example, theoretical computer science, functional programming, and hardware verification, mainly because of its great expressive power. Similar motivations apply here as well: higher-order functions can have other functions as arguments and this capability can be exploited to provide abstractions for knowledge representation, methods for constructing predicates, and a foundation for logic-based computation. The book should be of interest to researchers in machine learning, espe­ cially those who study learning methods for structured data. Machine learn­ ing applications are becoming increasingly concerned with applications for which the individuals that are the subject of learning have complex structure. Typical applications include text learning for the World Wide Web and bioinformatics. Traditional methods for such applications usually involve the extraction of features to reduce the problem to one of attribute-value learning.
54.99 In Stock
Logic for Learning: Learning Comprehensible Theories from Structured Data

Logic for Learning: Learning Comprehensible Theories from Structured Data

by John W. Lloyd
Logic for Learning: Learning Comprehensible Theories from Structured Data

Logic for Learning: Learning Comprehensible Theories from Structured Data

by John W. Lloyd

Hardcover(2003)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is concerned with the rich and fruitful interplay between the fields of computational logic and machine learning. The intended audience is senior undergraduates, graduate students, and researchers in either of those fields. For those in computational logic, no previous knowledge of machine learning is assumed and, for those in machine learning, no previous knowledge of computational logic is assumed. The logic used throughout the book is a higher-order one. Higher-order logic is already heavily used in some parts of computer science, for example, theoretical computer science, functional programming, and hardware verification, mainly because of its great expressive power. Similar motivations apply here as well: higher-order functions can have other functions as arguments and this capability can be exploited to provide abstractions for knowledge representation, methods for constructing predicates, and a foundation for logic-based computation. The book should be of interest to researchers in machine learning, espe­ cially those who study learning methods for structured data. Machine learn­ ing applications are becoming increasingly concerned with applications for which the individuals that are the subject of learning have complex structure. Typical applications include text learning for the World Wide Web and bioinformatics. Traditional methods for such applications usually involve the extraction of features to reduce the problem to one of attribute-value learning.

Product Details

ISBN-13: 9783540420279
Publisher: Springer Berlin Heidelberg
Publication date: 09/17/2003
Series: Cognitive Technologies
Edition description: 2003
Pages: 257
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Part I: Prologue.- Overview.- Introduction to Learning and Logic.- Part II: Logic.- Higher-order Logic.- Representation of Individuals.- Predicate Construction.- Programming with Equational Theories.- Part III: Learning.- The Problem of Learning.- Knowledge Representation for Learning.- Learning Systems.- Illustrations for Various Types.- Applications.- References.- Notation.- Index.
From the B&N Reads Blog

Customer Reviews