New Carbon-Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C-H Activation

New Carbon-Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C-H Activation

by Rui Shang
New Carbon-Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C-H Activation

New Carbon-Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C-H Activation

by Rui Shang

Hardcover(1st ed. 2017)

$54.99 
  • SHIP THIS ITEM
    Not Eligible for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This thesis presents the latest developments in new catalytic C–C bond formation methods using easily accessible carboxylate salts through catalytic decarboxylation with good atom economy, and employing the sustainable element iron as the catalyst to directly activate C–H bonds with high step efficiency. In this regard, it explores a mechanistic understanding of the newly discovered decarboxylative couplings and the catalytic reactivity of the iron catalyst with the help of density functional theory calculation.

The thesis is divided into two parts, the first of which focuses on the development of a series of previously unexplored, inexpensive carboxylate salts as useful building blocks for the formation of various C–C bonds to access valuable chemicals. In turn, the second part is devoted to several new C–C bond formation methodologies using the most ubiquitous transition metal, iron, as a catalyst, and using the ubiquitous C–H bond as the coupling partner.




Product Details

ISBN-13: 9789811031922
Publisher: Springer Nature Singapore
Publication date: 12/11/2016
Series: Springer Theses
Edition description: 1st ed. 2017
Pages: 216
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Introduction to Carbon-Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C-H Activation.- Part I New Carbon-Carbon Bond Formation Methodologies Based on Decarboxylation.- Transition-Metal-Catalyzed Decarboxylation and Decarboxylative Cross-Couplings.- Palladium-Catalyzed Decarboxylative Coupling of Potassium Oxalate Monoester with Aryl and Alkenyl Halides.- Synthesis of Polyfluorobiaryls via Copper-Catalyzed Decarboxylative Couplings of Potassium Polyfluorobenzoates with Aryl Bromides and Iodides.- Palladium-Catalyzed Decarboxylative Couplings of Potassium Polyfluorobenzoates with Aryl Bromides, Chlorides and Triflates.- Construction of C(sp3)-C(sp2) Bonds via Palladium-Catalyzed Decarboxylative Couplings of 2-(2-Azaaryl)acetate Salts with Aryl Halides.- Synthesis of α-Aryl Nitriles and α-Aryl Acetate Esters via Palladium-Catalyzed Decarboxylative Couplings of α-Cyano Carboxylate Salts and Malonate Monoester Salts with Aryl Halides.- Palladium-Catalyzed Decarboxylative Couplings of Nitrophenyl Acetate Salts and Its Derivatives with Aryl Halides.- Palladium-Catalyzed Decarboxylative Benzylation of α-Cyano Aliphatic Carboxylate Salts with Benzyl Electrophiles.- Part II New Carbon-Carbon Bond Formation Methodologies Based on Iron-Catalyzed C-H Activation.- Recent Develpments of Iron-Catalyzed Directed C-H Activation/C-C Bond Formation Reactions.-β-Arylation of Carboxamides via Iron-Catalyzed C(sp3)–H Bond Activation.- Iron-Catalyzed C(sp2)–H and C(sp3)–H Bond Functionalization with Organoboron Compounds.

From the B&N Reads Blog

Customer Reviews