Numerical Approximation of Partial Differential Equations
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.
"1123640766"
Numerical Approximation of Partial Differential Equations
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.
22.49 In Stock
Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations

by Sören Bartels
Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations

by Sören Bartels

eBook1st ed. 2016 (1st ed. 2016)

$22.49  $29.99 Save 25% Current price is $22.49, Original price is $29.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Product Details

ISBN-13: 9783319323541
Publisher: Springer-Verlag New York, LLC
Publication date: 06/02/2016
Series: Texts in Applied Mathematics , #64
Sold by: Barnes & Noble
Format: eBook
File size: 16 MB
Note: This product may take a few minutes to download.

About the Author

Sören Bartels is Professor of Applied Mathematics at the Albert-Ludwigs University in Freiburg, Germany. His primary research interest is in the development and analysis of approximation schemes for nonlinear partial differential equations with applications in the simulation of modern materials. Professor Bartels has published the Springer textbook "Numerik 3x9" and the monograph "Numerical methods for nonlinear partial differential equations" in the Springer Series in Computational Mathematics.

Table of Contents

Preface.- Part I Finite differences and finite elements.- Elliptic partial differential equations.- Finite Element Method.-  Part II Local resolution and iterative solution.- Local Resolution Techniques.- Iterative Solution Methods.- Part III Constrained and singularly perturbed problems.- Saddled-point Problems.- Mixed and Nonstandard methods.- Applications.- Problems and Projects.- Implementation aspects.- Notations, inequalities, guidelines.- Index 
From the B&N Reads Blog

Customer Reviews