Parallel Robots With Unconventional Joints: Kinematics and Motion Planning

Parallel Robots With Unconventional Joints: Kinematics and Motion Planning

ISBN-10:
3030113035
ISBN-13:
9783030113032
Pub. Date:
03/20/2019
Publisher:
Springer International Publishing
ISBN-10:
3030113035
ISBN-13:
9783030113032
Pub. Date:
03/20/2019
Publisher:
Springer International Publishing
Parallel Robots With Unconventional Joints: Kinematics and Motion Planning

Parallel Robots With Unconventional Joints: Kinematics and Motion Planning

$109.99
Current price is , Original price is $109.99. You
$109.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This book shows how, through certain geometric transformations, some of the standard joints used in parallel robots can be replaced with lockable or non-holonomic joints. These substitutions allow for reducing the number of legs, and hence the number of actuators needed to control the robot, without losing the robot's ability to bring its mobile platform to the desired configuration. The kinematics of the most representative examples of these new designs are analyzed and their theoretical features verified through simulations and practical implementations.


Product Details

ISBN-13: 9783030113032
Publisher: Springer International Publishing
Publication date: 03/20/2019
Series: Parallel Robots: Theory and Applications
Edition description: 1st ed. 2019
Pages: 107
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

1 Introduction: lockable and non-holonomic joints.- 1.1 Motivation.- 1.2 Precursors.- 1.3 Organization of this book.- References.- 2 Parallel robots with lockable revolute joints.- 2.1 Kinematics of the 4RbRPS parallel robot.- 2.2 Maneuvers.- 2.3 Motion planning.- 2.4 Hardware implementation.- 2.5 Software implementation.- References.- 3 Spherical non-holonomic joints.- 3.1 Under-actuated parallel robots with spherical non-holonomic joints.- 3.2 Implementation of spherical non-holonomic joints.- References.- 4 Kinematics of the 3SnPU spatial robot.- 4.1 The 3SnPU robot.- 4.2 Instantaneous kinematics.- 4.3 Statics analysis.- 4.4 Singularities.- 4.5 Controllability.- 4.6 Example.- References.- 5 Motion planning for the 3SnPU robot.- 5.1 Motion planning.- 5.2 Using truncated series.- 5.3 Example.- References.- 6 Kinematics of the Sn-2UPS spherical robot.- 6.1 Kinematic model.- 6.2 Deriving a bilinear model.- 6.3 Singularities.- 6.4 A, B, and rotations in R4.- 6.5 Workspace computation.- 7 Motion planning for the Sn-2UPS robot.- 7.1 Kinematic model.- 7.2 Three-move motion planner.- 7.3 Two-move motion planner.- 7.4 Single-move motion planner.- 7.5 Example.- 7.6 Implementation.- References.- 8 Conclusions.

From the B&N Reads Blog

Customer Reviews