Principles of Tissue Engineering / Edition 5

Principles of Tissue Engineering / Edition 5

ISBN-10:
0128184221
ISBN-13:
9780128184226
Pub. Date:
04/27/2020
Publisher:
Elsevier Science
ISBN-10:
0128184221
ISBN-13:
9780128184226
Pub. Date:
04/27/2020
Publisher:
Elsevier Science
Principles of Tissue Engineering / Edition 5

Principles of Tissue Engineering / Edition 5

$250.0
Current price is , Original price is $250.0. You
$250.00 
  • SHIP THIS ITEM
    Not Eligible for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

Now in its fifth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fifth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world’s experts of what is currently known about each specific organ system.

As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future.

This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and the application of tissue-engineering techniques for food production – is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the emerging technologies in the field.


Product Details

ISBN-13: 9780128184226
Publisher: Elsevier Science
Publication date: 04/27/2020
Edition description: 5th ed.
Pages: 1678
Product dimensions: 8.50(w) x 10.88(h) x (d)

About the Author

Robert Lanza is an American scientist and author whose research spans the range of natural science, from biology to theoretical physics. TIME magazine recognized him as one of the “100 Most Influential People in the World,” and Prospect magazine named him one of the Top 50 “World Thinkers.” He has hundreds of scientific publications and over 30 books, including definitive references in the fields of stem cells, tissue engineering, and regenerative medicine. He’s a former Fulbright Scholar and studied with polio-pioneer Jonas Salk and Nobel laureates Gerald Edelman (known for his work on the biological basis of consciousness) and Rodney Porter. He also worked closely (and co-authored papers in Science on self-awareness and symbolic communication) with noted Harvard psychologist BF Skinner. Dr. Lanza was part of the team that cloned the world’s first human embryo, the first endangered species, and published the first-ever reports of pluripotent stem cell use in humans.

Robert Langer received honorary doctorates from the ETH (Switzerland) in 1996 and the Technion (Israel) in 1997. Dr. Langer is the Kenneth J. Germeshausen Professor of Chemical and Biomedical Engineering at MIT. He received a Bachelor’s Degree from Cornell University in 1970 and a Sc.D. from MIT in 1974, both in chemical engineering. Dr. Langer has written 590 articles, 400 abstracts, 350 patents, and has edited 12 books.Dr. Langer has received over 70 major awards, including the Gairdner Foundation International Award, the Lemelson-MIT prize, the American Chemical Society (ACS) Polymer Chemistry and Applied Polymer Science Awards, Creative Polymer Chemistry Award (ACS, Polymer Division), the Pearlman Memorial Lectureship Award (ACD, Biochemical Technology Division), and the A.I.Ch.E’s Walker, Professional Progress, Bioengineering, and Stine Materials Science and Engineering Awards. In 1989, Dr. Langer was elected to the Institute of Medicine and the National Academy of Sciences, and in 1992 he was elected to both the National Academy of Engineering and to the National Academy of Sciences. He is the only active member of all 3 United States National Academies.

Dr. Joseph P. Vacanti received his M.D. degree from the university of Nebraska in 1974. He received his training in general surgery at the Massachusetts General Hospital from 1974 through 1981 and in pediatric surgery at The Children’s Hospital, Boston from 1981 through 1983. He then received clinical training in transplantation from the University of Pittsburgh. He spent two years in the laboratories of Dr. M. Judah Folkman working in the filed on angiogenesis from 1977 through 1979. Upon completion of his training, Dr. Vacanti joined the staff in surgery at children’s Hospital in Boston and began clinical programs in pediatric liver transplantation and extracorporeal membrane oxygenation. In the laboratory, he continued studies in and began work in the filed of tissue engineering in 1985. Dr. Vacanti is now John Homans Professor of Surgery at Harvard Medical School, Visiting surgeon at Massachusetts General Hospital, director of the Wellman 6 Surgical laboratories, director of the Laboratory of Tissue Engineering and Organ Fabrication and Director of Pediatric Transplantation at Massachusetts General Hospital, Boston. He has authored more than 120 original reports, 30 book chapters, and 197 abstracts. He has more than 25 patents or patents pending in the United States, Europe, and Japan.

Table of Contents

PART I – Foundations

Chapter 1 – Introduction

Bedir Tekinerdogan, Dominique Blouin, Hans Vangheluwe, Miguel Goulão, Paulo Carreira, Vasco Amaral

Chapter 2

An Ontological Foundation for Understanding Multi-Paradigm Modeling for Cyber-Physical Systems R. Paige, M. van den Brand

Chapter 3

Feature-based Survey of Cyber-Physical Systems

B. Akesson, J. Hooman, R. Dekker, W. Ekkelkamp, B. Stottelaar

PART II - Techniques

Chapter 4

Current standards and best practices used in CPSG. Orhan & M. Aksit

Chapter 5

Tools and techniques used in different disciplines for CPS development: Modeling languagesS. Schuster, I. Schaefer, C. Seidl

Chapter 6

Tools and techniques used in different disciplines for CPS development: Interfaces for InteroperabilityO. Al-wadeai, A. García-Domínguez, A. Bagnato, A. Abhervé, K. Barmpis

Chapter 7

Tools and techniques used in different disciplines for CPS development: ProcessesY. Luo, J. Mengerink, M. van den Brand, R. Schiffelers

Chapter 8

Requirements for future MPM4CPS modelling tools and techniquesB. Tekinerdogan, D. Blouin

PART III – Application Domains

Chapter 9

Case Study: Alarm Detection and Monitoring of Smart Factory Environment using Hybrid Sensor Network L. Banjanovic-Mehmedovic, D. Blouin, F. Mehmedovic, M. Zukic

Chapter 10

Case Study: Embedded Devices

Constantin-Bala Zamfirescu and Peter Larsen

Chapter 11

Case Study: SmartLab Cloud System for IoT

H. Vangheluwe

Chapter 12

Automated Analysis of Model-Driven Artifacts in Industry – Big Data Analytics

Y. Luo, J. Mengerink, M. van den Brand, R. Schiffelers

PART IV – Education

Chapter 13

On a MPM4CPS CurriculaV. Amaral, M. Goulão

Chapter 14Developing a mutually-recognized cross-domain study program in cyber-physical systems

Paulo Carreira

Glossary

Author Index

Subject Index

What People are Saying About This

From the Publisher

Presents the latest advances in the biology and design of tissues and organs, while simultaneously connecting the basic sciences with the potential application of tissue engineering to diseases affecting specific organ systems

From the B&N Reads Blog

Customer Reviews