Reliable Reasoning: Induction and Statistical Learning Theory

The implications for philosophy and cognitive science of developments in statistical learning theory.

In Reliable Reasoning , Gilbert Harman and Sanjeev Kulkarni—a philosopher and an engineer—argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors—a central topic in SLT.

After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.

1100657767
Reliable Reasoning: Induction and Statistical Learning Theory

The implications for philosophy and cognitive science of developments in statistical learning theory.

In Reliable Reasoning , Gilbert Harman and Sanjeev Kulkarni—a philosopher and an engineer—argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors—a central topic in SLT.

After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.

25.0 In Stock
Reliable Reasoning: Induction and Statistical Learning Theory

Reliable Reasoning: Induction and Statistical Learning Theory

Reliable Reasoning: Induction and Statistical Learning Theory

Reliable Reasoning: Induction and Statistical Learning Theory

Paperback(New Edition)

$25.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The implications for philosophy and cognitive science of developments in statistical learning theory.

In Reliable Reasoning , Gilbert Harman and Sanjeev Kulkarni—a philosopher and an engineer—argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors—a central topic in SLT.

After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.


Product Details

ISBN-13: 9780262517348
Publisher: MIT Press
Publication date: 01/13/2012
Series: Jean Nicod Lectures
Edition description: New Edition
Pages: 118
Product dimensions: 5.10(w) x 7.60(h) x 0.30(d)
Age Range: 18 Years

About the Author

Gilbert Harman is Stuart Professor of Philosophy at Princeton University and the author of Explaining Value and Other Essays in Moral Philosophy and Reasoning, Meaning, and Mind.

Sanjeev Kulkarni is Professor of Electrical Engineering and an associated faculty member of the Department of Philosophy at Princeton University with many publications in statistical learning theory.

What People are Saying About This

Sanjoy K. Mitter

In their interesting and stimulating book Reliable Reasoning, Harman, a philosopher, and Kulkarni, an information scientist, illuminate the philosophical issues related to inductive reasoning by studying it in terms of the mathematics of probabilistic learning. One of the great virtues of this approach is that the inductive inference made through learning can survive changes in the probabilistic modeling assumptions. I find that the authors have made a convincing and persuasive case for rigorously studying the philosophical issues related to inductive inference using recent ideas from the science of artificial intelligence.

Endorsement

This thoroughly enjoyable little book on learning theory reminds me of many classics in the field, such as Nilsson's Learning Machines or Minksy and Papert's Perceptrons: It is both a concise and timely tutorial 'projecting' the last decade of complex learning issues into simple and comprehensible forms and a vehicle for exciting new links among cognitive science, philosophy, and computational complexity.

Stephen J. Hanson, Department of Psychology, Rutgers University

From the Publisher

In their interesting and stimulating book Reliable Reasoning, Harman, a philosopher, and Kulkarni, an information scientist, illuminate the philosophical issues related to inductive reasoning by studying it in terms of the mathematics of probabilistic learning. One of the great virtues of this approach is that the inductive inference made through learning can survive changes in the probabilistic modeling assumptions. I find that the authors have made a convincing and persuasive case for rigorously studying the philosophical issues related to inductive inference using recent ideas from the science of artificial intelligence.

Sanjoy K. Mitter , Professor of Electrical Engineering, MIT

This thoroughly enjoyable little book on learning theory reminds me of many classics in the field, such as Nilsson's Learning Machines or Minksy and Papert's Perceptrons: It is both a concise and timely tutorial 'projecting' the last decade of complex learning issues into simple and comprehensible forms and a vehicle for exciting new links among cognitive science, philosophy, and computational complexity.

Stephen J. Hanson, Department of Psychology, Rutgers University

Stephen J. Hanson

This thoroughly enjoyable little book on learning theory reminds me of many classics in the field, such as Nilsson's Learning Machines or Minksy and Papert's Perceptrons: It is both a concise and timely tutorial 'projecting' the last decade of complex learning issues into simple and comprehensible forms and a vehicle for exciting new links among cognitive science, philosophy, and computational complexity.

From the B&N Reads Blog

Customer Reviews