Semiconductor Nanolasers

Semiconductor Nanolasers

ISBN-10:
1107110483
ISBN-13:
9781107110489
Pub. Date:
02/16/2017
Publisher:
Cambridge University Press
ISBN-10:
1107110483
ISBN-13:
9781107110489
Pub. Date:
02/16/2017
Publisher:
Cambridge University Press
Semiconductor Nanolasers

Semiconductor Nanolasers

$160.0
Current price is , Original price is $160.0. You
$160.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

This unique resource explains the fundamental physics of semiconductor nanolasers, and provides detailed insights into their design, fabrication, characterization, and applications. Topics covered range from the theoretical treatment of the underlying physics of nanoscale phenomena, such as temperature dependent quantum effects and active medium selection, to practical design aspects, including the multi-physics cavity design that extends beyond pure electromagnetic consideration, thermal management and performance optimization, and nanoscale device fabrication and characterization techniques. The authors also discuss technological applications of semiconductor nanolasers in areas such as photonic integrated circuits and sensing. Providing a comprehensive overview of the field, detailed design and analysis procedures, a thorough investigation of important applications, and insights into future trends, this is essential reading for graduate students, researchers, and professionals in optoelectronics, applied photonics, physics, nanotechnology, and materials science.

Product Details

ISBN-13: 9781107110489
Publisher: Cambridge University Press
Publication date: 02/16/2017
Pages: 332
Product dimensions: 9.96(w) x 7.09(h) x 7.09(d)

About the Author

Qing Gu is Assistant Professor of Electrical Engineering at the University of Texas, Dallas, where she directs research in the Nanophotonics Laboratory. Her research interests include the experimental investigation of miniature semiconductor lasers and other nanophotonic devices, novel light-emitting materials, quantum behavior in nanostructures, and integrated photonic circuits.

Yeshaiahu Fainman is Cymer Professor of Advanced Optical Technologies and Distinguished Professor in Electrical and Computer Engineering at the University of California, San Diego. He directs research in the Ultrafast and Nanoscale Optics Group. He is a Fellow of the OSA, the IEEE, and SPIE.

Table of Contents

1. Introduction; 2. Photonic mode metal-dielectric-metal based nanolasers; 3. Purcell effect and the evaluation of Purcell and spontaneous emission factors; 4. Plasmonic mode metal-dielectric-metal based nanolasers; 5. Antenna-inspired nano-patch lasers; 6. Active medium for semiconductor nanolasers: MQW vs. bulk gain; 7. Electrically pumped nanolasers; 8. Multi-physics design for nanolasers; 9. Cavity-free nanolaser; 10. Beyond nanolasers: inversionless exciton-polariton microlaser; 11. Application of nanolasers: photonic integrated circuits and other applications.
From the B&N Reads Blog

Customer Reviews