Soap Bubbles: Their Colors and Forces Which Mold Them

Soap Bubbles: Their Colors and Forces Which Mold Them

by C. V. Boys
Soap Bubbles: Their Colors and Forces Which Mold Them

Soap Bubbles: Their Colors and Forces Which Mold Them

by C. V. Boys

eBook

$7.49  $7.95 Save 6% Current price is $7.49, Original price is $7.95. You Save 6%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

An excellent primer and the classic work on the topic of soap bubbles and films, this book employs simple experiments to establish a practical basis for the existence and function of surface tension and energy minimization. Dozens of experiments require nothing more than soap, straws, and bits of rubber, yet they impart profound and fundamental concepts relating to the science of fluids.
Geared toward readers without much background in the subject, the book begins without difficult calculations and concludes with only the simplest equations. Lucid and concise experiments allow observers to formulate their own practical understanding of soap bubbles and provide a foundation for more serious studies. More than 80 illustrations complement the text.

Product Details

ISBN-13: 9780486165493
Publisher: Dover Publications
Publication date: 03/12/2013
Sold by: Barnes & Noble
Format: eBook
Pages: 192
File size: 3 MB

About the Author

Sir Charles Vernon Boys (1855-1944), a British physicist known for his innovative experiments, served as a Professor at the Imperial College of London from 1889-97. He was the first to write about soap bubbles from a scientific point of view, and he remains a folk hero to recreational math and science enthusiasts.

Read an Excerpt

SOAP BUBBLES

Their Colors and Forces Which Mold Them


By C. V. BOYS

Dover Publications, Inc.

Copyright © 1959 Dover Publications, Inc.
All rights reserved.
ISBN: 978-0-486-16549-3



CHAPTER 1

SOAP-BUBBLES

THEIR COLOURS

AND THE

FORCES WHICH MOULD THEM

Introductory

I DO not suppose that there is any one in this room who has not occasionally blown a common soap-bubble, and while admiring the perfection of its form, and the marvellous brilliancy of its colours, wondered how it is that such a magnificent object can be so easily produced.

I hope that none of you are yet tired of playing with bubbles, because, as I hope we shall see, there is more in a common bubble than those who have only played with them generally imagine.

The wonder and admiration so beautifully portrayed by Millais in a picture, copies of which, thanks to modern advertising enterprise, some of you may possibly have seen, will, I hope, in no way fall away in consequence of these lectures; I think you will find that it will grow as your knowledge of the subject increases. Plateau in his famous work, Statique des Liquides, quotes a passage from a book by Henry Berthoud, to the effect that there is an Etruscan vase in the Louvre in Paris in which children are represented blowing bubbles from a pipe. Plateau states, however, that no classical author refers to any such amusement, and the only two references to bubbles of any kind that he can find are in Ovid and Martial. I have hunted for this vase at the Louvre in vain. A correspondent, however, sent the quotation to the director, by whom he was informed that no such vase was there, but that a number of fictitious antique vases had been removed from the collection.

It is possible that some of you may like to know why I have chosen soapbubbles as my subject; if so, I am glad to tell you. Though there are many subjects which might seem to a beginner to be more wonderful, more brilliant, or more exciting, there are few which so directly bear upon the things which we see everyday. You cannot pour water from a jug or tea from a tea-pot; you cannot even do anything with a liquid of any kind, without setting in action the forces to which I am about to direct your attention. You cannot then fail frequently to be reminded of what you will hear and see in this room, and, what is perhaps most important of all, many of the things I am going to show you are so simple that you will be able without any apparatus to repeat for yourselves the experiments which I have prepared, and this you will find more interesting and instructive than merely listening to me and watching what I do.

There is one more thing I should like to explain, and that is why I am going to show experiments at all. You will at once answer, because it would be so dreadfully dull if I didn't. Perhaps it would. But that is not the only reason. I would remind you then that when we want to find out anything that we do not know, there are two ways of proceeding. We may either ask somebody else who does know, or read what the most learned men have written about it, which is a very good plan if anybody happens to be able to answer our question; or else we may adopt the other plan, and by arranging an experiment, find out for ourselves. An experiment is a question which we ask of Nature, who is always ready to give a correct answer, provided we ask properly, that is, provided we arrange a proper experiment. An experiment is not a conjuring trick, something simply to make you wonder, nor is it simply shown because it is beautiful, or because it serves to relieve the monotony of a lecture; if any of the experiments I show are beautiful, or do serve to make these lectures a little less dull, so much the better; but their chief object is to enable you to see for yourselves what the true answers are to the questions that I shall ask.


The Elastic Skin of Liquids

Now I shall begin by performing an experiment which you have all probably tried dozens of times without recognizing that you were making an experiment at all. I have in my hand a common camel's-hair brush. If you want to make the hairs cling together and come to a point, you wet it, and then you say the hairs cling together because the brush is wet. Now let us try the experiment; but as you cannot see this brush across the room, I hold it in the lantern, and you can see it enlarged upon the screen (Fig. 1, left hand). Now it is dry, and the hairs are separately visible. I am now dipping it in the water, as you can see, and on taking it out, the hairs, as we expected, cling together (Fig. 1, right hand), because they are wet, as we are in the habit of saying. I shall now hold the brush in the water, but there it is evident that the hairs do not cling at all (Fig. 1, middle), and yet they surely are wet now, being actually in the water. It would appear then that the reason which we always give is not exactly correct. This experiment, which requires nothing more than a brush and a glass of water, then, shows that the hairs of a brush cling together not only because they are wet, but for some other reason as well which we do not yet know. It also shows that a very common belief as to opening our eyes underwater is not founded on fact. It is very commonly said that if you dive into the water with your eyes shut you cannot see properly when you open them under water, because the water gums the eyelashes down over the eyes; and therefore you must dive in with your eyes open if you wish to see under water. Now as a matter of fact this is not the case at all; it makes no difference whether your eyes are open or not when you dive in, you can open them and see just as well either way. In the case of the brush we have seen that water does not cause the hairs to cling together or to anything else when under the water, it is only when taken out that this is the case. This experiment, though it has not explained why the hairs cling together, has at any rate told us that the reason always given is not sufficient.

I shall now try another experiment as simple as the last. I have a pipe from which water is very slowly issuing, but it does not fall away continuously; a drop forms which slowly grows until it has attained a certain definite size, and then it suddenly falls away. I want you to notice that every time this happens the drop is always exactly the same size and shape. Now this cannot be mere chance; there must be some reason for the definite size and shape. Why does the water remain at all? It is heavy and is ready to fall, but it does not fall; it remains clinging until it is a certain size, and then it suddenly breaks away, as if whatever held it was not strong enough to carry a greater weight. Mr. Worthington has carefully drawn on a magnified scale the exact shape of a drop of water of different sizes, and these you now see upon the diagram on the wall (Fig. 2). These diagrams will probably suggest the idea that the water is hanging suspended in an elastic bag, and that the bag breaks or is torn away when there is too great a weight for it to carry. It is true there is no bag at all really, but yet the drops take a shape which suggests an elastic bag. To show you that this is no fancy, I have supported by a tripod a large ring of wood over which a thin sheet of india-rubber has been stretched, and now on allowing water to pour in from this pipe you will see the rubber slowly stretching under the increasing weight, and, what I especially want you to notice, it always assumes a form like those on the diagram. As the weight of water increases the bag stretches, and now that there is about a pailful of water in it, it is getting to a state which indicates that it cannot last much longer; it is like the water-drop just before it falls away, and now suddenly it changes its shape (Fig. 3), and it would immediately tear itself away if it were not for the fact that india-rubber does not stretch indefinitely; after a time it gets tight and will withstand a greater pull without giving way. You therefore see the great drop now permanently hanging which is almost exactly the same in shape as the water-drop at the point of rupture. I shall now let the water run out by means of a syphon, and then the drop slowly contracts again. Now in this case we clearly have a heavy liquid in an elastic bag, whereas in the drop of water we have the same liquid but no bag that is visible. As the two drops behave in almost exactly the same way, we should naturally be led to expect that their form and movements are due to the same cause, and that the small water-drop has something holding it together like the india-rubber you now see.

Let us see how this fits the first experiment with the brush. That showed that the hairs do not cling together simply because they are wet; it is necessary also that the brush should be taken out of the water, or in other words it is necessary that the surface or the skin of the water should be present to bind the hairs together. If then we suppose that the surface of water is like an elastic skin, then both the experiments with the wet brush and with the waterdrop will be explained.

Let us therefore try another experiment to see whether in other ways water behaves as if it had an elastic skin.

I have here a plain wire frame fixed to a stem with a weight at the bottom, and a hollow glass globe fastened to it with sealing-wax. The globe is large enough to make the whole thing float in water with the frame up in the air. I can of course press it down so that the frame touches the water. To make the movement of the frame more evident there is fixed to it a paper flag.

Now if water behaves as if the surface were an elastic skin, then it should resist the upward passage of the frame which I am now holding below the surface. I let go, and instead of bobbing up as it would do if there were no such action, it remains tethered down by this skin of the water. If I disturb the water so as to let the frame out at one corner, then, as you see, it dances up immediately (Fig. 4). You can see that the skin of the water must have been fairly strong, because a weight of about one quarter of an ounce placed upon the frame is only just sufficient to make the whole thing sink.

This apparatus, which was originally described by Van der Mensbrugghe, I shall make use of again in a few minutes.

I can show you in a more striking way that there is this elastic layer or skin on pure clean water. I have a small sieve made of wire gauze sufficiently coarse to allow a common pin to be put through any of the holes. There are moreover about eleven thousand of these holes in the bottom of the sieve. Now, as you know, clean wire is wetted by water, that is, if it is dipped in water it comes out wet; on the other hand, some materials, such as paraffin wax, of which paraffin candles are made, are not wetted or really touched by water, as you may see for yourselves if you will only dip a paraffin candle into water. I have melted a quantity of paraffin in a dish and dipped this gauze into the melted paraffin so as to coat the wire all over with it, but I have shaken it well while hot to knock the paraffin out of the holes. You can now see on the screen that the holes, all except one or two, are open, and that a common pin can be passed through readily enough. This then is the apparatus. Now if water has an elastic skin which it requires force to stretch, it ought not to run through these holes very readily; it ought not to be able to get through at all unless forced, because at each hole the skin would have to be stretched to allow the water to get to the other side. This you understand is only true if the water does not wet or really touch the wire. Now to prevent the water that I am going to pour in from striking the bottom with so much force as to drive it through, I have laid a small piece of paper in the sieve, and am pouring the water on to the paper, which breaks the fall (Fig. 5). I have now poured in about half a tumbler of water, and I might put in more. I take away the paper but not a drop runs through. If I give the sieve a jolt then the water is driven to the other side, and in a moment it has all escaped. Perhaps this will remind you of one of the exploits of our old friend Simple Simon,

"Who went for water in a sieve, But soon it all ran through."


But you see if you only manage the sieve properly, this is not quite so absurd as people generally suppose.

If now I shake the water off the sieve, I can, for the same reason, set it to float on water, because its weight is not sufficient to stretch the skin of the water through all the holes. The water, therefore, remains on the other side, and it floats even though, as I have already said, there are eleven thousand holes in the bottom, any one of which is large enough to allow an ordinary pin to pass through. This experiment also illustrates how difficult it is to write real and perfect nonsense.

You may remember one of the stories in Lear's book of Nonsense Songs.

"They went to sea in a sieve, they did,
In a sieve they went to sea:
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a sieve they went to sea.

* * * *

"They sailed away in a sieve, they did,
In a sieve they sailed so fast,
With only a beautiful pea-green veil,
Tied with a riband by way of a sail,
To a small tobacco-pipe mast;"

* * * *


And so on. You see that it is quite possible to go to sea in a sieve—that is, if the sieve is large enough and the water is not too rough—and that the above lines are now realized in every particular (Fig. 6).

I may give one more example of the power of this elastic skin of water. If you wish to pour water from a tumbler into a narrow-necked bottle, you know how if you pour slowly it nearly all runs down the side of the glass and gets spilled about, whereas if you pour quickly there is no room for the great quantity of water to pass into the bottle all at once, and so it gets spilled again. But if you take a piece of stick or a glass rod, and hold it against the edge of the tumbler, then the water runs down the rod and into the bottle, and none is lost (Fig. 7); you may even hold the rod inclined to one side, as I am now doing, but the water runs down the wet rod because this elastic skin forms a kind of tube which prevents the water from escaping. This action is often made use of in the country to carry the water from the gutters under the roof into a water-butt below. A piece of stick does nearly as well as an iron pipe, and it does not cost anything like so much.

I think then that I have now done enough to show that on the surface of water there is a kind of elastic skin. I do not mean that there is anything that is not water on the surface, but that the water while there acts in a different way to what it does inside, and that it acts as if it were an elastic skin made of something like very thin india-rubber, only that it is perfectly and absolutely elastic, which india-rubber is not.


Capillary Attraction

You will now be in a position to understand how it is that in narrow tubes water does not find its own level, but behaves in an unexpected manner. I have placed in front of the lantern a dish of water coloured blue so that you may the more easily see it. I shall now dip into the water a very narrow glass pipe, and immediately the water rushes up and stands about half an inch above the general level. The tube inside is wet. The elastic skin of the water is therefore attached to the tube, and goes on pulling up the water until the weight of the water raised above the general level is equal to the force exerted by the skin. If I take a tube about twice as big, then this pulling action which is going on all round the tube will cause it to lift twice the weight of water, but this will not make the water rise twice as high, because the larger tube holds so much more water for a given length than the smaller tube. It will not even pull it up as high as it did in the case of the smaller tube, because if it were pulled up as high the weight of the water raised would in that case be four times as great, and not only twice as great, as you might at first think. It will therefore only raise the water in the larger tube to half the height, and now that the two tubes are side by side you see the water in the smaller tube standing twice as high as it does in the larger tube. In the same way, if I were to take a tube as fine as a hair the water would go up ever so much higher. It is for this reason that this is called Capillarity, from the Latin word capillus, a hair, because the action is so marked in a tube the size of a hair.

Supposing now you had a great number of tubes of all sizes, and placed them in a row with the smallest on one side and all the others in the order of their sizes, then it is evident that the water would rise highest in the smallest tube and less and less high in each tube in the row (Fig. 8), until when you came to a very large tube you would not be able to see that the water was raised at all. You can very easily obtain the same kind of effect by simply taking two squares pieces of window glass and placing them face to face with a common match or small fragment of anything to keep them a small distance apart along one edge while they meet together along the opposite edge. An india-rubber ring stretched over them will hold them in this position. I now take such a pair of plates and stand it in a dish of coloured water, and you at once see that the water creeps up to the top of the plates on the edge where they meet, and as the distance between the plates gradually increases, so the height to which the water rises gradually gets less, and the result is that the surface of the liquid forms a beautifully regular curve which is called by mathematicians a rectangular hyperbola (Fig. 9). I shall have presently to say more about this and some other curves, and so I shall not do more now than state that the hyperbola is formed because as the width between the plates gets greater the height gets less, or, what comes to the same thing, because the weight of liquid supported at any small part of the curve is always the same.


(Continues...)

Excerpted from SOAP BUBBLES by C. V. BOYS. Copyright © 1959 Dover Publications, Inc.. Excerpted by permission of Dover Publications, Inc..
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

INTRODUCTORY
THE ELASTIC SKIN OF LIQUIDS
CAPILLARY ATTRACTION
CAPILLARITY OF DIFFERENT LIQUIDS
POURING OIL ON TROUBLED WATER
LIQUID DROPS
SOAP-FILMS ; THEIR TENSION AND CURVATURE
LIQUID CYLINDERS AND JETS
A WATER TELEPHONE
SOAP-FILMS ON FRAMES
SOAP-BUBBLES AND ETHER
EXPERIMENTS WITH SOAP-BUBBLES
THE SOAP-BUBBLE
BUBBLES OTHER THAN SOAP-BUBBLES
COMPOSITE BUBBLES
OUT-OF-DOOR BUBBLES
THE COLOUR AND THICKNESS OF BUBBLES
PRACTICAL HINTS
From the B&N Reads Blog

Customer Reviews