Synchronization and Waves in Active Media
The interplay between synchronization and spatio-temporal pattern formation is central for a broad variety of phenomena in nature, such as the coordinated contraction of heart tissue, associative memory and learning in neural networks, and pathological synchronization during Parkinson disease or epilepsy. 
In this thesis, three open puzzles of fundametal research in Nonlinear Dynamics are tackled: How does spatial confinement affect the dynamics of three-dimensional vortex rings? What role do permutation symmetries play in the spreading of excitation waves on networks? Does the spiral wave chimera state really exist?
All investigations combine a theoretical approach and experimental verification, which exploit an oscillatory chemical reaction.  A novel experimental setup is developed that allows for studying networks with N > 1000 neuromorphic relaxation oscillators. It facilitates the free choice of network topology, coupling function as well as its strength, range and time delay, which can even be chosen as time-dependent. These experimental capabilities open the door to a broad range of future experimental inquiries into pattern formation and synchronization on large networks, which were previously out of reach.  

1133677236
Synchronization and Waves in Active Media
The interplay between synchronization and spatio-temporal pattern formation is central for a broad variety of phenomena in nature, such as the coordinated contraction of heart tissue, associative memory and learning in neural networks, and pathological synchronization during Parkinson disease or epilepsy. 
In this thesis, three open puzzles of fundametal research in Nonlinear Dynamics are tackled: How does spatial confinement affect the dynamics of three-dimensional vortex rings? What role do permutation symmetries play in the spreading of excitation waves on networks? Does the spiral wave chimera state really exist?
All investigations combine a theoretical approach and experimental verification, which exploit an oscillatory chemical reaction.  A novel experimental setup is developed that allows for studying networks with N > 1000 neuromorphic relaxation oscillators. It facilitates the free choice of network topology, coupling function as well as its strength, range and time delay, which can even be chosen as time-dependent. These experimental capabilities open the door to a broad range of future experimental inquiries into pattern formation and synchronization on large networks, which were previously out of reach.  

74.49 In Stock
Synchronization and Waves in Active Media

Synchronization and Waves in Active Media

by Jan Frederik Totz
Synchronization and Waves in Active Media

Synchronization and Waves in Active Media

by Jan Frederik Totz

eBook1st ed. 2019 (1st ed. 2019)

$74.49  $99.00 Save 25% Current price is $74.49, Original price is $99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The interplay between synchronization and spatio-temporal pattern formation is central for a broad variety of phenomena in nature, such as the coordinated contraction of heart tissue, associative memory and learning in neural networks, and pathological synchronization during Parkinson disease or epilepsy. 
In this thesis, three open puzzles of fundametal research in Nonlinear Dynamics are tackled: How does spatial confinement affect the dynamics of three-dimensional vortex rings? What role do permutation symmetries play in the spreading of excitation waves on networks? Does the spiral wave chimera state really exist?
All investigations combine a theoretical approach and experimental verification, which exploit an oscillatory chemical reaction.  A novel experimental setup is developed that allows for studying networks with N > 1000 neuromorphic relaxation oscillators. It facilitates the free choice of network topology, coupling function as well as its strength, range and time delay, which can even be chosen as time-dependent. These experimental capabilities open the door to a broad range of future experimental inquiries into pattern formation and synchronization on large networks, which were previously out of reach.  


Product Details

ISBN-13: 9783030110574
Publisher: Springer-Verlag New York, LLC
Publication date: 01/18/2019
Series: Springer Theses
Sold by: Barnes & Noble
Format: eBook
File size: 35 MB
Note: This product may take a few minutes to download.

Table of Contents

Introduction.- Confined Scroll Rings.- Target Wave Synchronization on a Network.- Spiral Wave Chimera.- Appendix: Dimensional Reduction of Oscillators and Oscillatory Patterns
From the B&N Reads Blog

Customer Reviews