The Evolution of Phylogenetic Systematics
The Evolution of Phylogenetic Systematics aims to make sense of the rise of phylogenetic systematics—its methods, its objects of study, and its theoretical foundations—with contributions from historians, philosophers, and biologists. This volume articulates an intellectual agenda for the study of systematics and taxonomy in a way that connects classification with larger historical themes in the biological sciences, including morphology, experimental and observational approaches, evolution, biogeography, debates over form and function, character transformation, development, and biodiversity. It aims to provide frameworks for answering the question: how did systematics become phylogenetic?
"1131484699"
The Evolution of Phylogenetic Systematics
The Evolution of Phylogenetic Systematics aims to make sense of the rise of phylogenetic systematics—its methods, its objects of study, and its theoretical foundations—with contributions from historians, philosophers, and biologists. This volume articulates an intellectual agenda for the study of systematics and taxonomy in a way that connects classification with larger historical themes in the biological sciences, including morphology, experimental and observational approaches, evolution, biogeography, debates over form and function, character transformation, development, and biodiversity. It aims to provide frameworks for answering the question: how did systematics become phylogenetic?
48.99 In Stock
The Evolution of Phylogenetic Systematics

The Evolution of Phylogenetic Systematics

by Andrew Hamilton (Editor)
The Evolution of Phylogenetic Systematics

The Evolution of Phylogenetic Systematics

by Andrew Hamilton (Editor)

eBook

$48.99  $65.00 Save 25% Current price is $48.99, Original price is $65. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The Evolution of Phylogenetic Systematics aims to make sense of the rise of phylogenetic systematics—its methods, its objects of study, and its theoretical foundations—with contributions from historians, philosophers, and biologists. This volume articulates an intellectual agenda for the study of systematics and taxonomy in a way that connects classification with larger historical themes in the biological sciences, including morphology, experimental and observational approaches, evolution, biogeography, debates over form and function, character transformation, development, and biodiversity. It aims to provide frameworks for answering the question: how did systematics become phylogenetic?

Product Details

ISBN-13: 9780520956759
Publisher: University of California Press
Publication date: 11/09/2013
Series: Species and Systematics , #5
Sold by: Barnes & Noble
Format: eBook
Pages: 314
File size: 6 MB

About the Author

Andrew Hamilton is Associate Dean in the Honors College at the University of Houston.

Read an Excerpt

The Evolution of Phylogenetic Systematics


By Andrew Hamilton

UNIVERSITY OF CALIFORNIA PRESS

Copyright © 2014 The Regents of the University of California
All rights reserved.
ISBN: 978-0-520-95675-9



CHAPTER 1

Reflections on the History of Systematics

ROBERT E. KOHLER


Of all the life sciences, systematics is probably the one whose history is least studied. Its celebrity founders have been well historified: Linnaeus, whose universal system of binomial nomenclature still endures; Darwin, who gave classification a biological foundation; and a few others. But of the activities of the hundreds of collectors, curators, and classifiers who have found, preserved, named, and ordered the million-plus species whose world we share—of these our knowledge remains scattered and fragmentary. This is paradoxical, because of all the sciences systematics has the deepest living memory, thanks to rules of nomenclature that oblige those who would name a new species to actively engage the literature back to the Linnaean big bang.

This situation is, happily, changing; substantial histories have been quietly accumulating, some by historians with a sustained devotion to the subject. These include Jim Endersby (2005, 2008), Paul Farber (1976, 1985), Jürgen Haffer (1992), Joel Hagen (1984, 1999), David Hull (1998), Gordon McOuat (1996, 2003), Ernst Mayr (1982, chaps. 4–6), Bruce Patterson (2000, 2001), Harriet Ritvo (1997), Peter Stevens (1986, 1994), Keith Vernon (1993), and Mary P. Winsor (1976).

There are also circumstances external to biological systematics that may stimulate greater interest in taxonomy. One is the decided uptick of interest among historians of non–life sciences in classifying, both as practice and as a way of knowing. This is especially marked in the history of chemistry (Ursula Klein, Michael Gordin) and mineralogy (Matthew Eddy) and also in the history of ecology and generally in sciences that deal with collections of material objects, like archaeology or ethnology (Klein 2003, 2005; Klein and Lefèvre 2007; Gordin 2002, 2004; Eddy 2003; Bensaude-Vincent, García-Belmar, and Bertomeu-Sánchez 2003; Müller-Wille 2003; and on ecology and thing-rich sciences, see Kohler 2007, 2008). It may be, too, that growing public concern about loss of biodiversity and anthropogenic mass extinction could make systematics and its history matters of broad interest. Attitudes are changing, both in the world of scholarship and in political culture, that have for over a century relegated systematics to the low end of the totem pole of prestige in science.

Meanwhile, we can imagine what we would ideally like to know about the subject. Basic facts, for a start: who first gave that great multitude of creatures their scientific names and identities; and when, where, and how. There is the human encounter with nature in the field—my own particular interest: how fieldwork has been organized, who paid for it, how it was experienced; and the encounter in museums and herbaria with the ever-rising flood of specimens and species to be put in order. How have systematists dealt with tens of millions of fragile objects and a million-plus natural kinds? It is a problem of data handling that few other sciences have had to confront.

Systematists themselves are no less interesting subjects of historical inquiry. What sort of people are these energetic finders and sorters, and what are their distinctive folkways—their rules of categorizing and naming; their customs of rewarding discovery and pruning errors and redundancies? How do they maintain (as all communities must) a sense of common identity, and by what social arrangements do they renew that community across generations? Recruitment is a particular problem for systematics, because the science is based in museums rather than in university departments with their ready access to young talent; so training is more like an informal personal apprenticeship than in most sciences.

This comprehensive history of systematics is the larger undertaking to which my own recent book on American systematists and their global activities between 1870 and 1940 is a modest contribution (Kohler 2006). I want to use this chapter, first, to summarize some of the main ideas of my book, which deals mainly with fieldwork; then, to think more broadly how my approach might apply as well to systematics in other times and places.

It turns out that the history of discovery of new species—at least in vertebrate groups—is surprisingly lumpy and episodic. I did not know that at first. Only when I had nearly finished my book did it occur to me that it would not be hard to chart the historical pace of discovery. The data were ready to hand—thanks to systematists' custom, when compiling species lists, of giving the date that each species received its currently accepted name.

I'm not sure what I expected to find when I began to tabulate these data: perhaps a more or less steady pace of discovery, with spurts and pauses reflecting the randomness of individual initiative and serendipity. So I was surprised—riveted, in fact—when the data on vertebrate groups began to show distinct waves. Following the initial Linnaean burst of naming before 1800 there was a strong second wave of activity peaking in the 1830s and 1840s; then a third wave (for most vertebrate groups though not for birds) that topped out in the 1890s and 1900s (my period); and a fourth, much smaller peak (more a bump) of discovery in the 1960s and 1970s (Kohler 2006, 6–7, fig. 1.1). (See fig. 1.1.)

I was not surprised that a heightened pace of discovery occurred in my period of interest. I had found much anecdotal evidence that it did, and knew just how zealously American museums in this period were collecting around the world. What I had not anticipated was that the entire history of species discovery, before and after my period, would be episodic, with decades of intensified activity separated by relative lulls. It was obvious from these data that individual opportunities and initiative were not idiosyncratic and random but structured—by some thing or things, and on a global scale. But by what things? The same ones that I had found operating in the United States circa 1880–1930? Or by others distinctive of their own times and places?

A grand Noachian narrative of species inventory is there to be written—that became clear—but too big for me, a novice in the history of taxonomy, and perhaps too big for any scholar working alone. But seeing a pattern so concretely silhouetted in the data, I had to wonder how the interpretation I had devised for my chapter of the larger narrative might inform the whole.


SURVEY SCIENCE

We aren't used to thinking of the late nineteenth and early twentieth century as a golden age of systematics. The usual story is that after the grand voyages and explorations of the late eighteen and early nineteenth century, natural history was gradually eclipsed by the newly ascendant sciences of the lab. This is true—but only half the truth. Lab culture did not cause systematics to wither away; it continues to flourish. As is often the case, "decline" was only relative and more a matter of perception and attitude than achievement. It was in the early twentieth century that inventories of most vertebrate groups became essentially (say, 90 percent) complete. For birds this point was reached around 1900; for most mammals, circa 1940; for bats and insectivores, by 1950; and for North American snakes and turtles, the 1920s.

The roster of collecting expeditions by American institutions alone is impressive. The U.S. Biological Survey under its founder and chief C. Hart Merriam fielded dozens of parties per year from the late 1880s to the early 1910s, mostly in western North America. A dozen state natural history surveys were also active, most of these small shoestring operations but a few systematic and sustained (e.g., in California, Michigan, and Nebraska). Research museums organized expeditions both in their own regions and abroad: the Museum of Comparative Zoology (Harvard), the Museum of Vertebrate Zoology (University of California), and the University of Michigan Museum. However, it was the larger civic museums that were organizers of expeditions on a truly grand and global scale: most notably the American Museum in New York, the Field Museum in Chicago, and Philadelphia's Academy of Natural Sciences but also midsized museums in cities like Brooklyn, Milwaukee, and San Francisco. The National Museum in Washington was barred from underwriting in-house expeditions, but its curators routinely took part in expeditions organized by federal agencies that had that right.

The scale of museum expeditioning in its heyday is remarkable—all the more so because it is now so little remembered. Between 1887 and 1940 the American Museum dispatched some 206 sponsored expeditions in vertebrate zoology, plus over 200 more in other field sciences (archaeology, paleontology, anthropology). The yearly average in zoology was 3.8 in 1891–1901, 8.5 in 1906–25, and 13.9 in 1926–40. In the peak years 1929 and 1930, 30 and 27 expeditions were dispatched at a cost of $283,000 and $207,000 respectively. In vertebrate zoology, the Field Museum organized 72 expeditions (1894–28), and the Academy of Natural Sciences sent out 57 (1889–1930). In addition to these official, named, and sponsored expeditions there were uncounted unofficial research trips by curators. Overall, thousands of expeditions must have been launched at a cost of millions or tens of millions of dollars (Kohler 2006, 117–123). If there was a big science before the era of Big Science, systematics was it.

Taxonomic field practice in this period was also distinctive: it was a survey mode, quite unlike the practices of earlier and later eras. Aiming at a complete inventory of the species of entire regions, survey collecting was both extensive and intensive: extensive in its geographic reach; intensive in the way parties combed every nook and cranny of each locale, crisscrossing and revisiting until every resident species was found and recorded.

Survey collecting was also collecting en masse. It sought, not a single "typical" pair of specimens per species, but large series that represented the full range of intraspecies variability. Expeditions were planned, organized, and (for their time) capital intensive. Whereas collections of tens of thousands of specimens were once thought large, survey collecting produced collections ten or a hundred times as large, and prepared by standardized methods. Survey was rigorous and exacting; and it made systematics if not an exact then an exacting science.

Systematics in the survey mode required an elaborate infrastructure of museums, with their dedicated study collections and elaborate exhibits, and of social networks of well-to-do patrons and local participants. Working in a survey mode also put new demands on its practitioners. To succeed in the business, systematists had of course to be schooled in basic sciences, adept in the arcana of diagnosis and naming, and at home in the vast and sprawling taxonomic literature. But since they were now both field and museum naturalists, they had also to have practical knowledge of how to organize and lead complex field parties and manage sponsors and the media. And there was the curatorial side of tending museum collections, which required skill in managing, fundraising, and museum politics, plus knowledge of the specialized techniques of constructing naturalistic dioramas en masse.

What circumstances in the survey period enabled systematists to create such an elaborate and exacting science and to produce a great wave of species discovery? In my book I set forth a model of three interlocking elements: an environmental element, which gave systematists physical access to relatively unaltered natural areas; a scientific element, which gave them the intellectual incentives to undertake collecting in the demanding survey mode; and a cultural element—wide public interest in nature and natural history—which drew big private money into building museums and collections and into expeditioning on the grand scale.

First the environment. The era of survey collecting coincided almost exactly with a distinctive and fleeting phase in the settlement history of North America that I have called the "inner frontiers." The linear, westward-moving frontier was famously declared closed in the 1890 Census and by Frederic Jackson Turner in his celebrated essay of 1893. There were by then so many pockets of settlement scattered about the West that no distinct line separated settled from unsettled land. However, pockets remained in the interstices of road and railroad nets that were sparsely settled and ecologically lightly altered, yet also relatively easily and cheaply accessible to hunters, tourists, vacationers, and—most significantly for us—naturalists and collectors.

This landscape of inner frontiers was created by Americans' restless mobility and devotion to land speculation, as well as by what William Cronon has called the logic of capital. To preempt rivals, railroad companies built lines into areas in which there were not yet enough residents to produce an actual profit. State and federal giveaways of cheap homestead land likewise encouraged rapid hop-skipping settlement, and speculators would sit tight on large parcels of land and wait for rising prices. The political economy of manifest destiny thus created a landscape of intermingling wild and settled terrain. In the East, abandonment of marginal agricultural land created similar mosaics of fields and second-growth forest.

It was not that naturalists had never before been able to visit the wide West: of course they had. The point is that they had not previously been able to operate there in a survey mode. Transfrontier areas had been accessible only to individual explorers, who lived off the land, or to state-sponsored expeditions on the grand scale. In either case, visitors were limited to rapid transects and opportunistic collecting. Not so in the inner frontiers: there, cheap and relatively comfortable transport enabled naturalists to linger in safety and collect in depth. In inner frontiers expeditions could stay in continual touch by telegraph and rail with home bases, ship out tons of specimens cheaply and securely, and be resupplied en route. They could make repeat visits if necessary, to make species inventories as complete as possible.

The inner frontiers were in hindsight a once-only bonanza of species discovery waiting to happen. Here were large tracts made roughly known by earlier explorer-naturalists who had skimmed the cream of species that were easy to find and catch but who had not lingered—because they could not—to get those that were rare, shy, or elusive. Inner frontiers invited survey. Arguably, survey was possible only in such places. It was a (scientific) form of land use as characteristic of the place and time as bonanza hunting or land speculating. No wonder environment and scientific practice overlapped almost exactly in time.

But physical access to places of opportunity does not explain why scientists would see and take advantage of the opportunities. Naturalists had also to have intellectual incentives to visit inner frontiers, not just casually on working vacations, but systematically, as members of organized surveys. Investment in travel and organized fieldwork had to pay off scientifically—and to be seen in advance to pay off—so that surveys could be planned and patrons secured. Opportunity derived not just from nature but also from changes in taxonomic science.


(Continues...)

Excerpted from The Evolution of Phylogenetic Systematics by Andrew Hamilton. Copyright © 2014 The Regents of the University of California. Excerpted by permission of UNIVERSITY OF CALIFORNIA PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

List of Contributors

Introduction
Andrew Hamilton

Part One. Historical Foundations
1. Reflections on the History of Systematics
Robert E. Kohler

2. Willi Hennig’s Part in the History of Systematics
Michael Schmitt

3. Homology as a Bridge between Evolutionary Morphology, Developmental Evolution, and Phylogenetic Systematics
Manfred D. Laubichler

Part Two. Conceptual Foundations
4. Historical and Conceptual Perspectives on Modern Systematics: Groups, Ranks, and the Phylogenetic Turn
Andrew Hamilton

5. The Early Cladogenesis of Cladistics
Olivier Rieppel

6. Cladistics at an Earlier Time
Gareth Nelson

7. Patterson’s Curse, Molecular Homology, and the Data Matrix
David M. Williams and Malte C. Ebach

8. History and Theory in the Development of Phylogenetics in Botany: Toward the Future
Brent D. Mishler

Part Three. Technology, Concepts, and Practice
9. Well-Structured Biology: Numerical Taxonomy’s Epistemic Vision for Systematics
Beckett Sterner

10. A Comparison of Alternative Form-Characterization: Approaches to the Automated Identification of Biological Species
Norman MacLeod

11. The New Systematics, the New Taxonomy, and the Future of Biodiversity Studies
Quentin Wheeler and Andrew Hamilton

Index
From the B&N Reads Blog

Customer Reviews