Theory Of Orbital Motion

Theory Of Orbital Motion

by Arjun Tan
ISBN-10:
9812709126
ISBN-13:
9789812709127
Pub. Date:
01/07/2008
Publisher:
World Scientific Publishing Company, Incorporated
ISBN-10:
9812709126
ISBN-13:
9789812709127
Pub. Date:
01/07/2008
Publisher:
World Scientific Publishing Company, Incorporated
Theory Of Orbital Motion

Theory Of Orbital Motion

by Arjun Tan
$45.0
Current price is , Original price is $45.0. You
$45.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Orbital motion is a vital subject which has engaged the greatest minds in mathematics and physics from Kepler to Einstein. It has gained in importance in the space age and touches every scientist in any field of space science. Still, there is almost a total dearth of books in this important field at the elementary and intermediate levels — at best a chapter in an undergraduate or graduate mechanics course.This book addresses that need, beginning with Kepler's laws of planetary motion followed by Newton's law of gravitation. Average and extremum values of dynamical variables are treated and the central force problem is formally discussed. The planetary problem in Cartesian and complex coordinates is tackled and examples of Keplerian motion in the solar system are also considered. The final part of the book is devoted to the motion of artificial Earth satellites and the modifications of their orbits by perturbing forces of various kinds.

Product Details

ISBN-13: 9789812709127
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 01/07/2008
Pages: 282
Product dimensions: 6.29(w) x 8.96(h) x 0.60(d)

Table of Contents


Preface     vii
Kepler's Laws of Planetary Motion     1
Background     1
Kepler's Laws of Planetary Motion     2
Keplerian Ellipse     3
Polar Equation of a Conic     5
The Slope of a Tangent to an Ellipse     6
General Formulation of Particle Dynamics     8
Kinematics in a Two-Dimensional Plane     8
Auxiliary Circular Reference Orbit     11
Speeds at Various Points of an Orbital Ellipse     13
General Theorems on Speeds of a Planet     15
Velocity Components of a Planet     18
Planetary Motion as the Sum of Circular and Linear Motions     21
Orbit of the Earth and its Eccentricity     22
Bode's Law     24
Newton's Law of Gravitation     26
Gravity and Gravitation     26
Newton's Law of Gravitation     27
Centripetal Force and Radius of Curvature     27
Kepler's Laws and Newton's Law for Circular Orbits     30
Newton's Law of Gravitation from Elliptical Orbits     31
The Nature of Gravitational Force     35
General Dynamics of a Particle     37
Kepler's Third Law as an Extension of the First Two     39
The Equation of Energy     41
Energy of the Orbit     43
The Virial Theorem of Clausius     45
Average and Extremum Values of Variables     47
Concerning the Distance in Kepler's Third Law     47
Average Values of the Radial Distance     49
True and Eccentric Anomalies     52
Kepler's Equation, Mean Anomaly and Mean Motion     54
Average Values of Radial Distance using Eccentric Anomaly     55
Locations of Extrema of Dynamical Variables     59
Centripetal Acceleration in Planetary Motion     61
The Jerk Vector in Planetary Motion     64
Polar Coordinates in Reference to the Empty Focus     69
Estimating the Eccentricity of Earth's Orbit     72
Estimating the Distance of a Heavenly Body     76
The Central Force Problem     78
Central Forces     78
General Dynamics of Angular Motion     79
The Planetary Problem in Polar Coordinates     80
Alternative Derivation of the Equation of Orbits     83
Lagrangian and Hamiltonian Formulations of Classical Mechanics     86
The Planetary Problem in Lagrangian and Hamiltonian Formulations     88
Variational Principles in Classical Mechanics      89
The Planetary Problem from the Variational Principle     90
The Effective Potential Energy     92
Determination of the Force Law from the Equation of Orbit     94
A General Orbit Equation and the Force Law     97
Stability of Circular Orbits under Central Forces     100
The Precessing Ellipse as Superposition of Two Power Laws     102
The Precession of Mercury's Perihelion     104
The Runge-Lenz Vector     106
Vector Hodographs in Planetary Motion     112
The Hodograph     112
Vector Hodographs in Uniform Circular Motion     113
Orientation of the Orbital Ellipse     115
Polar Coordinates of Special Points on the Orbital Ellipse     116
Hodograph of the Position Vector in Planetary Motion     116
Velocities at Special Points of an Elliptical Orbit     118
Velocity Hodographs in Planetary Motion     120
Acceleration Hodographs in Planetary Motion     122
Hodographs of the Jerk Vector in Planetary Motion     123
Hodographs of Rotational Quantities in Planetary Motion     124
Planetary Motion in Cartesian Coordinates     127
Cartesian Coordinates versus Polar Coordinates     127
Equations of an Ellipse in Cartesian Coordinates     128
Cartesian Coordinates of the Special Points on an Orbital Ellipse     131
Kepler's Law of Areas in Cartesian Coordinates     132
Inverse-Square Law in Cartesian Coordinates     134
Velocity of a Planet in Cartesian Coordinates     135
Velocities at Special Points of an Elliptical Orbit     136
The Radius of Curvature in Cartesian Coordinates     138
The Equation of Energy in Cartesian Coordinates     142
The Equation of an Orbit in Cartesian Coordinates     142
Acceleration of a Planet in Cartesian Coordinates     143
The Jerk Vector in Cartesian Coordinates     144
The Runge-Lenz Vector in Cartesian Coordinates     144
Lagrange's Equations in Cartesian Coordinates     145
The Two-Body Problem     146
The Three-Body Problem     151
Planetary Problem in Complex Coordinates     158
Complex Numbers     158
Graphical Representation of Complex Numbers     159
Polar Coordinate Representation of Complex Numbers     160
Complex Numbers as Coplanar Vectors     160
Polar Coordinates Representation of Coplanar Vectors     162
Rotation of a Vector in Complex Coordinates      163
Central Force Motion in Complex Coordinates     164
Conservation of Energy in Complex Coordinates     165
Conservation of Angular Momentum in Complex Coordinates     166
Conservation of the Runge-Lenz Vector in Complex Coordinates     166
Keplerian Motion in the Solar System     169
Keplerian Motion in the Solar System     169
Attraction of a Thin Uniform Spherical Shell on a Point Mass     170
Attraction of a Spherically-Symmetric Body on a Point Mass     171
Physical Properties of the Earth and the Moon     172
Velocities of Artificial Earth Satellites     174
Periods of Artificial Earth Satellites     175
Velocity of Escape from the Surface of the Earth     176
Time of Travel to the Moon     177
Times of Travel to Mars and Venus     178
The Mass of the Sun from the Period of the Earth     180
The Two-Body Problem in the Solar System     181
Estimating the Mass of the Moon     182
Determining the Masses of Venus and Mercury     183
The Three-Body Problem in the Solar System     184
Planetary Motion in Three-Dimensional Space     189
Keplerian Motion in Three-Dimensional Space     189
Newton's Law of Gravitation in Three Dimensions     189
Conservation of Angular Momentum in Three Dimensions     191
Conservation of Total Energy in Three Dimensions     192
Conservation of the Runge-Lenz Vector in Three Dimensions     193
The Equation of Orbit in Three Dimensions     194
The Two-Body Problem in Three Dimensions     195
The Planetary Problem in Rectangular Coordinates     196
The Planetary Problem in Spherical Coordinates     199
Motion of Artificial Earth Satellites     205
Artificial Earth Satellites     205
Frames of Reference     206
The Celestial Sphere, Right Ascension and Declination     207
Orbital Elements of a Satellite     208
Three Fundamental Vectors     210
Determination of Orbital Elements     211
The Topocentric-Horizontal Coordinate System     215
Approximate Solution of Kepler's Equation     217
Ground Track of a Satellite     218
Perturbations of Satellite Orbits     221
Perturbations of Satellite Orbits     221
Perturbative Forces on a Satellite in Orbit     222
Effect of a Perturbing Force on the Semi Major Axis     224
Effect of a Perturbing Force on Eccentricity      227
Effect of a Perturbing Force on Inclination     228
Effect of a Perturbing Force on the Longitude of an Ascending Node     229
Effect of a Perturbing Force on True Anomaly     232
Effect of a Perturbing Force on the Argument of Perigee     233
Effects of a Pertubing Force on the Period and Mean Motion     235
Effects of Finite Impulse on the Orbital Elements     236
Effects of Atmospheric Drag on Orbital Elements     237
Effects of Earth's Gravitational Field on Orbital Elements     240
Satellite Fragmentation and Orbital Debris     242
Velocity Perturbations from Orbital Element Changes     243
The Ellipse and its Properties     251
The Ellipse in Everyday Life     251
The Definition of an Ellipse     253
Special Properties of the Ellipse     255
An Ellipse as Sections of Cones and Cylinders     257
Constructions of the Ellipse     258
General Equation of a Conic in Cartesian Coordinates     263
Equations of an Ellipse in Cartesian Coordinates     264
Equation of an Ellipse in Cartesian Coordinates with the Right Focus at the Origin     266
Parametric Equations of the Ellipse     267
The Polar Equation of a Conic      268
The Pedal Equation of the Ellipse     269
The Equation of an Ellipse in Eccentric Polar Coordinates     270
The Equation of an Ellipse in Comple Coordinates     270
References     272
Index     276
From the B&N Reads Blog

Customer Reviews