TORUS 2 - Toward an Open Resource Using Services: Cloud Computing for Environmental Data / Edition 1 available in Hardcover, eBook
TORUS 2 - Toward an Open Resource Using Services: Cloud Computing for Environmental Data / Edition 1
- ISBN-10:
- 178630600X
- ISBN-13:
- 9781786306005
- Pub. Date:
- 06/03/2020
- Publisher:
- Wiley
TORUS 2 - Toward an Open Resource Using Services: Cloud Computing for Environmental Data / Edition 1
Buy New
$177.95-
PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Overview
Product Details
ISBN-13: | 9781786306005 |
---|---|
Publisher: | Wiley |
Publication date: | 06/03/2020 |
Pages: | 320 |
Product dimensions: | 6.50(w) x 9.40(h) x 0.90(d) |
About the Author
Table of Contents
Preface xiPart 1. Earth Science Remote Sensing xvii
Introduction to Part 1 xixDominique LAFFLY
Chapter 1. A Brief History of Remote Sensing 1Dominique LAFFLY
1.1. History 1
1.2. Fields of application 8
1.3. Orbits, launchers and platforms 10
1.4. The acquired data are digital images 12
1.5. So what is remote sensing? Some definitions 14
1.6. Notes 19
1.7. References 21
Chapter 2. Physics of RS 23Luca TOMASSETTI
2.1. Introduction 23
2.2. Remote sensing 23
2.3. Fundamental properties of electromagnetic waves 29
2.3.1. Wave equation and solution 29
2.3.2. Quantum properties of electromagnetic radiation 30
2.3.3. Polarization, coherence, group and phase velocity, the Doppler effect 31
2.4. Radiation quantities 31
2.4.1. Spectral quantities 33
2.4.2. Luminous quantities 34
2.5. Generation of electromagnetic waves 34
2.6. Detection of electromagnetic waves 37
2.7. Interaction of electromagnetic waves with matter 38
2.7.1. Overview 38
2.7.2. Interaction mechanisms 39
2.8. Solid surfaces sensing in the visible and near infrared 41
2.8.1. Wave-surface interaction mechanisms 43
2.9. Radiometric and geometric resolutions 45
2.10. References 46
Chapter 3. Image Quality 47Dominique LAFFLY
3.1. Introduction 47
3.2. Image quality – geometry 54
3.2.1. Whiskbroom concept 57
3.2.2. Pushbroom concept 60
3.2.3. Full frame concept 62
3.2.4. Optical geometric distortions 64
3.2.5. Relief distortions 66
3.2.6. Inverse location model 67
3.2.7. Direct location model 69
3.2.8. Root Mean Square (RMS) validation 72
3.2.9. Resampling methods 73
3.2.10. Image geometric quality to assume geographical space continuity 75
3.3. Image quality – radiometry 76
3.3.1. Radiometric model of the instrument 78
3.3.2. Radiometric equalization and calibration 79
3.3.3. Radiometric signal noise reduction (SNR) 81
3.3.4. Radiometric physical value 82
3.3.5. Image quality – resolution 84
3.4. Conclusion 91
3.5. Notes 91
3.6. References 91
Chapter 4. Remote Sensing Products 95Van Ha PHAM, Viet Hung LUU, Anh PHAN, Dominique LAFFLY, Quang Hung BUI and Thi Nhat Thanh NGUYEN
4.1. Atmospheric observation 95
4.1.1. Introduction to common atmospheric gases and particles 95
4.1.2. Introduction to meteorological parameters 103
4.1.3. Atmospheric observation from satellite 107
4.2. Land observation 128
4.2.1. Introduction 128
4.2.2. Land cover/land use classification system 129
4.2.3. Legend 134
4.2.4. Data 134
4.2.5. Methodology 137
4.2.6. Global land cover datasets 154
4.3. Conclusion 158
4.4. References 158
Chapter 5. Image Processing in Spark 163Yannick LE NIR, Florent DEVIN, Thomas BALDAQUIN, Pierre MESLER LAZENNEC, Ji Young JUNG, Se-Eun KIM, Hyeyoung KWOON, Lennart NILSEN, Yoo Kyung LEE and Dominique LAFFLY
5.1. Introduction 163
5.2. Prediction map generation 164
5.2.1. Spark 164
5.2.2. Implementation 165
5.2.3. Naive method 167
5.2.4. Advanced method 168
5.3. Conclusion 171
Chapter 6. Satellite Image Processing using Spark on the HUPI Platform 173Vincent MORENO and Minh Tu NGUYEN
6.1. Introduction 173
6.2. Presentation of GeoTrellis 174
6.3. Using GeoTrellis in Hupi-Notebook 174
6.3.1. Some core concepts of GeoTrellis 177
6.3.2. Computation of NDVI 177
6.3.3. Compare two NDVI 178
6.3.4. Descriptive statistics of NDVI per Tile 178
6.3.5. K-means 179
6.4. Workflows in HDFS: automatize image processing 181
6.4.1. Create a jar 181
6.4.2. Monitor the Spark jobs 182
6.4.3. Tune performance of the Spark job 183
6.4.4. Create a workflow in Hupi-Studio 184
6.5. Visualizations in Hupi-Front 186
6.6. Cloud service 188
6.7. Development 189
Chapter 7. Remote Sensing Case Studies 191Van Ha PHAM, Thi Nhat Thanh NGUYEN and Dominique LAFFLY
7.1. Satellite AOD validation using R 191
7.1.1. Introduction 191
7.1.2. Datasets 192
7.1.3. Validation methodology 195
7.1.4. Experiments and results 198
7.1.5. Conclusion 204
7.2. Georeferencing satellite images 204
7.2.1. Introduction 204
7.2.2. Georeferencing methods 205
7.2.3. Datasets and methodology 207
7.2.4. Results and discussion 210
7.3. Conclusion 216
7.4. Appendix: R source code of validation process 217
7.5. References 222
Conclusion to Part 1 225Dominique LAFFLY
Part 2. GIS Application and Geospatial Data Infrastructure 227
Chapter 8. Overview of GIS Application 229Quang Huy MAN
8.1. Introduction 229
8.2. Enterprise GIS for environmental management 230
8.3. GIS and decision-making in planning and management 232
8.3.1. Data quality and control 233
8.3.2. Decision support systems (DSS) 233
8.3.3. Integrating GIS with the DSS 234
8.4. GIS for water-quality management 235
8.5. GIS for land-use planning 236
8.6. Application of the technology in LUP and management 240
8.6.1. Computers and software programs applied to LUP and management 241
8.6.2. Application of GIS analysis and MCE in land-use planning and management 242
8.7. References 243
Chapter 9. Spatial Data Infrastructure 247Quang Hung BUI, Quang Thang LUU, Duc Van HA, Tuan Dung PHAM, Sanya PRASEUTH and Dominique LAFFLY
9.1. Introduction 247
9.2. Spatial data infrastructure 247
9.3. Components of spatial data infrastructure 249
9.4. Open standards for spatial data infrastructure 251
9.4.1. Open geospatial consortium (OGC) 251
9.4.2. OGC’s open standards 252
9.4.3. Usage of OGC’s open standards in SDI 255
9.5. Server architecture models for the National Spatial Data Infrastructure and Geospatial One-Stop (GOS) portal 256
9.5.1. GOS portal architecture 256
9.5.2. Standards for GOS portal architecture 257
9.5.3. Taxonomy of geospatial server architecture 257
9.5.4. Three reference architectures for server architecture model 258
9.6. References 260
List of Authors 263
Index 265
Summaries of other volumes 267