Trace Quantitative Analysis by Mass Spectrometry

Trace Quantitative Analysis by Mass Spectrometry

Trace Quantitative Analysis by Mass Spectrometry

Trace Quantitative Analysis by Mass Spectrometry

eBook

$109.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

This book is devoted to the use of mass spectrometry in quantitative measurements of amounts of target (known) chemical compounds present at trace levels in complex matrices, such as drugs and their metabolites in body fluids, pesticide residues in foodstuffs, contaminants in drinking water, etc. Such demanding measurements, defined as 1 part in 106 – 1012, involve the use of a wide range of apparatus and of experimental procedures and methods of data evaluation, all of which must be utilized properly if reliable estimates of chemical concentrations and their associated uncertainties are to be obtained. While this is true of any chemical analysis, modern advances in trace-level analysis are critically dependent on developments in mass spectrometry.

The approach adopted throughout the book is to emphasize the fundamentals underlying the scientific instruments and methodologies, illustrated by historically important developments and more recent innovations. However, discussions of the fundamentals are reinforced and related to the real-world by two chapters dedicated to method development and validation. Finally, how "the fundamental things apply" to real-world problems is illustrated in the final chapter devoted to representative examples from a wide range of application areas.

This book does not cover important branches of mass spectrometry that provide accurate and precise quantitative measurements of relative concentrations, e.g. variations in isotopic ratios of an element by isotope ratio mass spectrometry and accelerator mass spectrometry.  Rather, it is mainly concerned with determinations of absolute amount of substance, particularly for small organic molecules present at trace levels in complex matrices.

The book

  • covers analysis of "small" ( 2000 Da) organic molecules, in environmental and biomedical matrices (trace level analyses of metals and other elements are not included).
  • provides a comprehensive introduction to the ancillary techniques and tools, including statistical analysis, that must be coordinated to provide a reliable result for a trace-level quantitative analysis by mass spectrometry.
  • discusses method development and validation, GLP, etc., in the context of a fitness-for-purpose approach that is applicable to any quantitative analytical method.
  • written at a level that presupposes some basic undergraduate-level knowledge of chemistry, physics, and mathematics and statistics.
  • treats the more recent developments in quantitative analysis of specific proteins in biological systems using proteolytic peptides as surrogate analytes.

Any book such as this can only be regarded as a preparation for the real learning process in this demanding practical art, namely "learning by doing" i.e. working on real-life problems in a laboratory. However, this book will be useful both in providing enough background information (“learning from others”) that the first exposure to the "learning by doing" process will not seem quite so daunting, and also will provide useful background for evaluation of new technologies as they appear.


Product Details

ISBN-13: 9781119964391
Publisher: Wiley
Publication date: 08/24/2011
Sold by: JOHN WILEY & SONS
Format: eBook
Pages: 752
File size: 18 MB
Note: This product may take a few minutes to download.

About the Author

Professor Robert K Boyd, National Research Council, Institute for National Measurement Standards, Ottawa, Canada
Robert Boyd obtained his B Sc and Ph D from St Andrews University. In 1962 he took a post-doctoral fellow position at NRC followed by periods at the University of Toronto & University of Guelph. In 1986 he re-joined the NRC, and since that time has served as adjunct professor at Dalhousie University (1992-2001). Since 2001 he has been Researcher Emeritus at the NRC in Ottawa.
Professor Boyd has published over 160 research papers, four book chapters & 10 NRC Technical reports. In 1002 he received the Maxxam Award for Analytical Chemistry and in 2003 the Queen Elizabeth II Gold Jubilee Medal. He is currently Chair of the Science Advisory Board for the Genome Prarie project on enabling technologies for proteomics. And a member of the NSERC Committee for Scientific & Technical review of ISTC proposals. He was an editor for Rapid Communications in Mass Spectrometry from 1990 – 1997 and from 1997 – 2005 was the journal's Editor-in-Chief.

Dr Robert A Bethem, senior VP of the Bioanalytical Group at Alta Analytical Laboratory, CA, USA and Professor Dwight Matthews of the University of Vermont, USA

Table of Contents

Preface.

Acknowledgements.

1 Measurement, Dimensions and Units.

1.1 Introduction.

1.2 The International System of Units (SI).

1.3 ‘Mass-to-Charge Ratio’ in Mass Spectrometry.

1.4 Achievable Precision in Measurement of SI Base Quantities.

1.5 Molecular Mass Limit for Trace Quantitation by Mass Spectrometry.

1.6 Summary of Key Concepts.

2 Tools of the Trade I. The Classical Tools.

2.1 Introduction.

2.2 Analytical and Internal Standards: Reference Materials.

2.3 The Analytical Balance.

2.4 Measurement and Dispensing of Volume.

2.5 Preparation of Solutions for Calibration.

2.6 Introduction to Calibration Methods for Quantitative Analysis.

2.7 Summary of Key Concepts.

3 Tools of the Trade II. Theory of Chromatography.

3.1 Introduction.

3.2 General Principles of Chemical Separations.

3.3 Summary of Important Concepts.

3.4 Plate Theory of Chromatography.

3.5 Nonequilibrium Effects in Chromatography: the van Deemter Equation.

3.6 Gradient Elution.

3.7 Capillary Electrophoresis and Capillary Electrochromatography.

Appendix 3.1 Derivation of the Plate Theory Equation for Chromatographic Elution.

Appendix 3.2 Transformation of the Plate Theory Elution Equation from Poisson to Gaussian Form.

Appendix 3.3 A Brief Introduction to Snyder’s Theory of Gradient Elution.

List of Symbols Used in Chapter 3.

4 Tools of the Trade III. Separation Practicalities.

4.1 Introduction.

4.2 The Analyte and the Matrix.

4.3 Extraction and Clean-Up: Sample Preparation Methods.

4.4 Chromatographic Practicalities.

4.5 Summary of Key Concepts.

Appendix 4.1 Responses of Chromatographic Detectors: Concentration vs Mass–Flux Dependence.

5 Tools of the Trade IV. Interfaces and Ion Sources for Chromatography–Mass Spectrometry.

5.1 Introduction.

5.2 Ion Sources that can Require a Discrete Interface Between Chromatograph and Source.

5.3 Ion Sources not Requiring a Discrete Interface.

5.4 Source–Analyzer Interfaces Based on Ion Mobility.

5.5 Summary of Key Concepts.

5.1 Appendix 5.1: Methods of Sample Preparation for Analysis by MALDI.

6 Tools of the Trade V. Mass Analyzers for Quantitation: Separation of Ions by m/z Values.

6.1 Introduction.

6.2 Mass Analyzer Operation Modes and Tandem Mass Spectrometry.

6.3 Motion of Ions in Electric and Magnetic Fields.

6.4 Mass Analyzers.

6.5 Activation and Dissociation of Ions.

6.6 Vacuum Systems.

6.7 Summary of Key Concepts.

Appendix 6.1 Interaction of Electric and Magnetic Fields with Charged Particles.

Appendix 6.2 Leak Detection.

Appendix 6.3 List of Symbols Used in Chapter 6.

7 Tools of the Trade VI. Ion Detection and Data Processing.

7.1 Introduction.

7.2 Faraday Cup Detectors.

7.3 Electron Multipliers.

7.4 Post-Detector Electronics.

7.5 Summary of Key Concepts.

8 Tools of the Trade VII: Statistics of Calibration, Measurement and Sampling.

8.1 Introduction.

8.2 Univariate Data: Tools and Tests for Determining Accuracy and Precision.

8.3 Bivariate Data: Tools and Tests for Regression and Correlation. 

8.4 Limits of Detection and Quantitation.

8.5 Calibration and Measurement: Systematic and Random Errors.

8.6 Statistics of Sampling of Heterogeneous Matrices.

8.7 Summary of Key Concepts.

Appendix 8.1 A Brief Statistics Glossary.

Appendix 8.2 Symbols Used in Discussion of Calibration Methods.

9 Method Development and Fitness for Purpose.

9.1 Introduction.

9.2 Fitness for Purpose and Managing Uncertainty.

9.3 Issues Between Analyst and Client: Examining What’s at Stake.

9.4 Formulating a Strategy.

9.5 Method Development.

9.6 Matrix Effects.

9.7 Contamination and Carryover.

9.8 Establishing the Final Method.  

10 Method Validation and Sample Analysis in a Controlled Laboratory Environment.

10.1 Introduction.

10.2 Method Validation.

10.3 Conduct of the Validaton.

10.4 Examples of Methods and Validations Fit for Purpose.

10.5 Validated Sample Analysis.

10.6 Documentation.

10.7 Traceability.

11 Examples from the Literature.

11.1 Introduction.

11.2 Food Contaminants.

11.3 Anthropogenic Pollutants in Water.

11.4 GC–MS Analyses of Persistent Environmental Pollutants.

11.5 Bioanalytical Applications.

11.6 Quantitative Proteomics.

11.7 Analysis of Endogenous Analytes.

Epilog.

References.

Index.

What People are Saying About This

From the Publisher

"This work, well documented and easy to read, will without doubt delight teachers and researchers in analytical chemistry, permitting them to choose apparatus best suited to their analytical problems, to understand how to use them, and finally to put them to work in developing and validating quantitative methods in thev laboratory." (l'actualité chimique, October 2010)"There are many textbooks on the general principles and applications of mass spectrometry, but none of them cover these topics in such detail as the present book. … A valuable contribution to the mass spectrometry textbooks that are currently available, and is useful for both the neophyte and the specialist." (Analytical and Bioanalytical Chemistry, July 2009)

"I highly recommend this book … to all those readers of this journal involved in quantitative analysis … Boyd, Basic, and Bethem provided us with a wealth of easy accessible information on this subject." (Journal of Statistical Software, January 2009)

"Trace Quantitative Analysis by Mass Spectrometry is a wonderful book for beginner and intermediate students, analysts, and scientists keen on learning more about mass spectrometry. The authors' discussion of history and the evolution of relevant science make the text lively and engaging, no small achievement for a book about analytical science." (PharmTech.com, December 2, 2008)

From the B&N Reads Blog

Customer Reviews