Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization

Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization

by Maurizio Dapor
Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization

Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization

by Maurizio Dapor

eBook4th ed. 2023 (4th ed. 2023)

$111.99  $149.00 Save 25% Current price is $111.99, Original price is $149. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book describes, as simply as possible, the mechanisms of scattering (both elastic and inelastic) of electrons with solid targets (electron–atom, electron–plasmon, and electron–phonon interactions). It also presents the main strategies of the Monte Carlo method, as well as numerous comparisons between simulation results and the experimental data available in the literature. Furthermore it provides readers with all the information they need in order to write their own Monte Carlo code and to compare the obtained results with the many numerical and experimental examples presented throughout the book.

An extended and updated third edition of a work published in 2014 (first edition) and in 2017 (second edition) on the application of the Monte Carlo method to the transport of fast electrons in solids, this book includes, as novel topics, the theory of polarized electron beams (i.e. density matrix and spin polarization), the study of elastic scattering by molecules, a classical treatment of the Bethe-Bloch stopping power, a simple derivation of the f- and ps-sum rules, the Vicanek and Urbassek formula for the calculation of the backscattering coefficient, the Wolff theory describing the secondary electron spectra, and fundamental aspects of the interactions between electrons beams and solid targets. Further, it describes a completely analytical approach (the so-called multiple reflection method) for calculating the absorbed, backscattered, and transmitted fractions of electrons from unsupported and supported thin films. It also discusses recent applications of the Monte Carlo method.


Product Details

ISBN-13: 9783031372421
Publisher: Springer-Verlag New York, LLC
Publication date: 08/10/2023
Series: Springer Tracts in Modern Physics , #290
Sold by: Barnes & Noble
Format: eBook
File size: 20 MB
Note: This product may take a few minutes to download.

About the Author

Dr. Maurizio Dapor is Head of the Interdisciplinary Laboratory for Computational Science of the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-LISC). He holds a M.Sc. degree in Physics and a Ph.D. degree in Materials Science and Engineering. His research covers Monte Carlo simulations of the transport of fast electrons in solids, with applications to the scanning electron microscopy and to several electron spectroscopies. He was Visiting Professor at the Departamento de Física Aplicada, Universidad de Alicante, from April to June 2016, and Leverhulme Visiting Professor at the Department of Materials Science and Engineering at the University of Sheffield from December 2014 to November 2015. He was Scientific Consultant at the Integrated Systems Laboratory of the Swiss Federal Institute of Technology (ETH), Zurich, from January to December 2009, and Research Associate at the University of Sheffield’s Department of Engineering Materials from June 2007 to February 2008.

Table of Contents

Electron Transport in Solids.- Computational Minimum.- Cross-sections. Basic Aspects.- Scattering Mechanisms.- Random Numbers.- Monte Carlo Strategies.- Electron Beam Interactions with Solid Targets and Thin Films. Basic Aspects.

From the B&N Reads Blog

Customer Reviews