eBook

FREE

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book provides comprehensive, current scientific and applied practical knowledge on vegetable grafting, a method gaining considerable interest that is used to protect crops from soil-borne diseases, abiotic stress and to enhance growth/yield. Though the benefits of using grafted transplants are now fully recognized worldwide, understanding the rootstock-scion interactions under variable environmental pressures remains vital for grafting-mediated crop improvement. In this book the authors attend to this need and explain the reasons for, and methods and applications of, grafting. Vegetable Grafting: Principles and Practices covers: · rootstock breeding, signalling, and physiological and molecular mechanisms involved in grafting; · beneficial effects of grafting including reducing disease damage and abiotic stress; · side effects relating to the impact of grafting on fruit quality; and · practical applications and speciality crops. Including high-quality colour images and written by an international team of expert authors, this book provides up-to-date scientific data and is also concerned with translating science to the field. It is an essential resource for researchers, advanced technicians, practitioners and extension workers.

Product Details

ISBN-13: 9781780648996
Publisher: CABI
Publication date: 06/09/2017
Sold by: Barnes & Noble
Format: eBook
Sales rank: 48,579
File size: 28 MB
Note: This product may take a few minutes to download.

About the Author

Giuseppe Colla is with DAFNE, Italy.

Francisco Perez-Alfocea is with Consejo Superior de Investigaciones Cientificas (CSIC), Spain.

Dietmar Schwarz is with Leibniz Institute of Vegetable and Ornamental Crops, Germany.

Table of Contents

1: Introduction to vegetable grafting
1.1: Importance and use of vegetable grafting
1.2: The process of vegetable grafting
1.3: Problems associated with vegetable grafting
1.4: Conclusions
2: Genetic resources for rootstock breeding
2.1: Genetic diversity
2.2: Genebank collections
2.3: Current usage of genetic material in rootstocks
2.4: Germplasm collection of other plant families
2.5: Concluding remarks
3: Rootstock breeding: current practices and future technologies
3.1: Introduction
3.2: Stacking traits: meiosis or grafting or both?
3.3: Developing stable, core collections of germplasm for breeding
3.4: Deploying genetic diversity for rootstocks
3.5: Grafting as a tool for genetic hybridisation and chimera production
3.6: Selection of improved rootstocks
3.7: Transgenic rootstocks
3.8: Rootstock registration and commercialization
4: Rootstock-scion signalling: key factors mediating scion performance
4.1: Introduction
4.2: Current knowledge of ionic and chemical signalling between rootstock and scion
4.3: Conclusions
5: Physiological and molecular mechanisms underlying graft compatibility
5.1: Introduction
5.2: Anatomical and physiological steps during graft union development
5.3: Role of secondary metabolites at the interface in graft incompatibility
5.4: Cell-to-cell communication between graft partners
5.5: Understanding the molecular mechanisms involved in graft union formation and compatibility.
5.6: Methods for examining graft union development and compatibility
5.7: Conclusions and future perspectives
6: Grafting as agro-technology for reducing disease damage
6.1: Introduction
6.2: The first step: Managing diseases in the nursery
6.3: Disease spread from the nursery to the field, the example of powdery mildew of watermelons
6.4: Intra- and interspecific grafting and their relations to diseases
6.5: Biotic or abiotic stress? Different responses of grafted plants to environmental conditions, the case of "physiological wilt", and germplasm selection for rational breeding
6.6: Grafted plants' response to nematodes
6.7: Commercial rootstocks and unknown genetics
6.8: Different mechanisms involved in disease resistance induced by grafting
6.9: Conclusions
7: Grafting as a tool to tolerate abiotic stress
7.1: Introduction
7.2: Temperature stress
7.3: Salinity stress
7.4: Nutrient stress
7.5: Stress induced by heavy metals and metalloids
7.6: Stress by adverse soil pH
7.7: Drought and flood stress
7.8: Conclusions
8: Quality of grafted vegetables
8.1: What is quality?
8.2: Rootstock effects on fruit quality
8.3: Effects of grafting on ripening and postharvest behaviour
8.4: Bio-physiological processes affecting fruit quality
8.5: Conclusion and perspectives
9: Practical applications and speciality crops
9.1: Establishment of grafted transplant under Mediterranean climate conditions
9.2: Recommendations for the use of grafted plants in greenhouses. The case of the Netherlands
9.3: Role of grafting in speciality crops
9.4: Conclusions and future perspective of vegetable grafting
10: Index
From the B&N Reads Blog

Customer Reviews